Solovay Kitaev and Randomized Compilation
- URL: http://arxiv.org/abs/2503.14788v1
- Date: Tue, 18 Mar 2025 23:35:29 GMT
- Title: Solovay Kitaev and Randomized Compilation
- Authors: Oliver Maupin, Ashlyn D. Burch, Christopher G. Yale, Matthew N. H. Chow, Terra Colvin, Jr., Brandon Ruzic, Melissa C. Revelle, Brian K. McFarland, Eduardo Ibarra-GarcĂa-Padilla, Alejandro Rascon, Andrew J. Landahl, Susan M. Clark, Peter J. Love,
- Abstract summary: We use the Solovay Kitaev (SK) algorithm to generate an ensemble of one qubit rotations over which to perform randomized compilation.<n>We find that this simple randomized gate synthesis algorithm can reduce the approximation error of these rotations in the absence of quantum noise by at least a factor of two.
- Score: 28.326187971248213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the use of the Solovay Kitaev (SK) algorithm to generate an ensemble of one qubit rotations over which to perform randomized compilation. We perform simulations to compare the trace distance between the quantum state resulting from an ideal one qubit RZ rotation and discrete SK decompositions. We find that this simple randomized gate synthesis algorithm can reduce the approximation error of these rotations in the absence of quantum noise by at least a factor of two. We test the technique under the effects of a simple coherent noise model and find that it can mitigate coherent noise. We also run our algorithm on Sandia National Laboratories' QSCOUT trapped-ion device and find that randomization is able to help in the presence of realistic noise sources.
Related papers
- Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - PAPAL: A Provable PArticle-based Primal-Dual ALgorithm for Mixed Nash Equilibrium [58.26573117273626]
We consider the non-AL equilibrium nonconptotic objective function in two-player zero-sum continuous games.
Our novel insights into the particle-based algorithms for continuous distribution strategies are presented.
arXiv Detail & Related papers (2023-03-02T05:08:15Z) - On classical simulation algorithms for noisy Boson Sampling [2.8655318786364408]
We present a classical algorithm that approximately samples from the output distribution of certain noisy Boson Sampling experiments.
This is inspired by a recent result of Aharonov, Gao, Landau, Liu and Vazirani and makes use of an observation originally due to Kalai Kindler.
arXiv Detail & Related papers (2023-01-27T04:42:59Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Blind Source Separation for Mixture of Sinusoids with Near-Linear
Computational Complexity [0.0]
We propose a multi-tone decomposition algorithm that can find the frequencies, amplitudes and phases of the fundamental sinusoids in a noisy sequence.
When estimating $M$ number of sinusoidal sources, our algorithm successively estimates their frequencies and jointly optimize their amplitudes and phases.
arXiv Detail & Related papers (2022-03-27T15:16:07Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Sample-Optimal PAC Learning of Halfspaces with Malicious Noise [4.8728183994912415]
We study efficient PAC learning of halfspaces in $mathRd$ in the presence of malicious noise of Valiant(1985)
We present a new analysis for the algorithm of Awasthi et al.( 2017) and show that it essentially achieves the near-optimal sample complexity bound of $tildeO(d)$.
We extend the algorithm and analysis to the more general and stronger nasty noise model of Bbbshoutyetal (2002), showing that it is still possible to achieve near-optimal noise tolerance and sample complexity in time.
arXiv Detail & Related papers (2021-02-11T20:18:20Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics.
In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable.
Our framework is driven by an unsupervised learning approach, where only the noise samples are required.
arXiv Detail & Related papers (2021-01-21T04:48:15Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
Noise mitigation can be performed up to some error for which we derive upper bounds.
Experiments on 15 (23) qubits using IBM's devices to test both the noise model and the error-mitigation scheme.
We show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.
arXiv Detail & Related papers (2021-01-07T02:19:58Z) - Efficient classical simulation and benchmarking of quantum processes in
the Weyl basis [0.0]
We develop a randomized benchmarking algorithm which uses Weyl unitaries to efficiently identify and learn a mixture of error models.
We apply our methods to ansatz circuits that appear in the Variational Quantum Eigensolver.
arXiv Detail & Related papers (2020-08-27T16:46:12Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.