論文の概要: Pruning-Based TinyML Optimization of Machine Learning Models for Anomaly Detection in Electric Vehicle Charging Infrastructure
- arxiv url: http://arxiv.org/abs/2503.14799v1
- Date: Wed, 19 Mar 2025 00:18:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:29:57.479548
- Title: Pruning-Based TinyML Optimization of Machine Learning Models for Anomaly Detection in Electric Vehicle Charging Infrastructure
- Title(参考訳): 電気自動車充電インフラにおける異常検出のための機械学習モデルのプルーニングベースTinyML最適化
- Authors: Fatemeh Dehrouyeh, Ibrahim Shaer, Soodeh Nikan, Firouz Badrkhani Ajaei, Abdallah Shami,
- Abstract要約: 本稿では,EVCIを対象とする資源制約環境における異常検出のためのプルーニング手法について検討する。
最適化されたモデルは、モデルのサイズと推論時間の大幅な削減を実現しました。
特に,EVCIでは,プルーニングとFSが重要な異常検出能力を保ちながら,計算効率を向上させることが示唆された。
- 参考スコア(独自算出の注目度): 8.29566258132752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing need for real-time processing on IoT devices, optimizing machine learning (ML) models' size, latency, and computational efficiency is essential. This paper investigates a pruning method for anomaly detection in resource-constrained environments, specifically targeting Electric Vehicle Charging Infrastructure (EVCI). Using the CICEVSE2024 dataset, we trained and optimized three models-Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and XGBoost-through hyperparameter tuning with Optuna, further refining them using SHapley Additive exPlanations (SHAP)-based feature selection (FS) and unstructured pruning techniques. The optimized models achieved significant reductions in model size and inference times, with only a marginal impact on their performance. Notably, our findings indicate that, in the context of EVCI, pruning and FS can enhance computational efficiency while retaining critical anomaly detection capabilities.
- Abstract(参考訳): IoTデバイス上でのリアルタイム処理の必要性が高まっているため、マシンラーニング(ML)モデルのサイズ、レイテンシ、計算効率の最適化が不可欠である。
本稿では,特に電気自動車充電インフラ(EVCI)を対象とする資源制約環境における異常検出のためのプルーニング手法について検討する。
CICEVSE2024データセットを用いて,MLP(Multi-Layer Perceptron),LSTM(Long Short-Term Memory),Optunaを用いたXGBoostスルーハイパーパラメータチューニングという3つのモデルをトレーニングし,最適化した。
最適化されたモデルでは、モデルのサイズと推測時間の大幅な削減が達成され、性能に限界が生じただけだった。
特に,EVCIでは,プルーニングとFSが重要な異常検出能力を保ちながら,計算効率を向上させることが示唆された。
関連論文リスト
- Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning? [42.362388367152256]
大規模言語モデル(LLM)は、LoRAを使用してパラメータ効率の良いCode Llamaを微調整するために使用される。
提案手法は,演算オーバーヘッドを著しく低減しつつ,ルート平均角誤差(RMSE)の点で競争力や優位性を実現する。
論文 参考訳(メタデータ) (2025-04-08T13:15:47Z) - Sample-aware Adaptive Structured Pruning for Large Language Models [14.605017410864583]
本研究では,大規模言語モデル(LLM)のためのサンプル対応型構造化プルーニングフレームワークであるAdaPrunerを紹介する。
特に、AdaPrunerは構造化プルーニング解空間を構築して、LLMから冗長パラメータを効果的に除去する。
20%のプルーニング比で、AdaPrunerでプルーニングされたモデルは、未プルーニングモデルのパフォーマンスの97%を維持している。
論文 参考訳(メタデータ) (2025-03-08T12:00:21Z) - EDCA -- An Evolutionary Data-Centric AutoML Framework for Efficient Pipelines [0.276240219662896]
この作業では、Evolutionary Data Centric AutoMLフレームワークであるEDCAを紹介します。
データ品質は通常、AutoMLの見過ごされている部分であり、手作業と時間を要するタスクであり続けています。
EDCAは、AutoMLベンチマークのトップの2つのフレームワークであるFLAMLとTPOTと比較された。
論文 参考訳(メタデータ) (2025-03-06T11:46:07Z) - Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
条件監視(CM)は機械学習(ML)モデルを使用して異常および異常な条件を識別する。
本研究では,MLベースのUAV CMフレームワークにおけるネットワークリソースの最適化について検討する。
次元削減技術を活用することで、ネットワークリソース消費の99.9%が削減される。
論文 参考訳(メタデータ) (2025-02-21T14:36:12Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
この研究は、性能評価のためのより効率的な指標として、事前学習損失に焦点を当てている。
我々は、データソース間のFLOPに基づいて、ドメイン固有の事前学習損失を予測するために、電力法解析関数を拡張した。
我々は2層ニューラルネットワークを用いて、複数のドメイン固有の損失と下流性能の非線形関係をモデル化する。
論文 参考訳(メタデータ) (2024-10-11T04:57:48Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NASが登場し、データセット依存からタスク依存への探索プロセスを一般化した。
本稿では多目的拡散プロセスを通じて拡散NAGを拡張するPOMONAGを紹介する。
結果は、NAS201とMobileNetV3の2つの検索スペースで検証され、15の画像分類データセットで評価された。
論文 参考訳(メタデータ) (2024-09-30T16:05:29Z) - REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning [23.92661395403251]
近年のリハーサルフリーな手法は,視覚関連連続学習(CL)とドリフトデータに優れ,資源効率に欠ける。
本稿では,Resource-Efficient Prompting(REP)を提案する。
提案手法は高速なプロンプト選択を用いて、注意深く設定されたモデルを用いて入力データを洗練する。
論文 参考訳(メタデータ) (2024-06-07T09:17:33Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。