論文の概要: Project Jenkins: Turning Monkey Neural Data into Robotic Arm Movement, and Back
- arxiv url: http://arxiv.org/abs/2503.14847v1
- Date: Wed, 19 Mar 2025 03:12:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:02.995990
- Title: Project Jenkins: Turning Monkey Neural Data into Robotic Arm Movement, and Back
- Title(参考訳): Project Jenkins: 猿の神経データをロボットアームの動きに変える
- Authors: Andrii Zahorodnii, Dima Yanovsky,
- Abstract要約: Project Jenkinsは、脳内の神経活動がロボットの動きにどのようにデコードされるかを探る。
我々は、デコード(脳信号をロボットアームの動きに変換する)と符号化(与えられた動きに対応する脳活動のシミュレーション)のモデルを開発する。
ユーザがリアルタイムでジョイスティックの動きから合成脳データを生成できるインタラクティブなWebコンソールを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Project Jenkins explores how neural activity in the brain can be decoded into robotic movement and, conversely, how movement patterns can be used to generate synthetic neural data. Using real neural data recorded from motor and premotor cortex areas of a macaque monkey named Jenkins, we develop models for decoding (converting brain signals into robotic arm movements) and encoding (simulating brain activity corresponding to a given movement). For the interface between the brain simulation and the physical world, we utilized Koch v1.1 leader and follower robotic arms. We developed an interactive web console that allows users to generate synthetic brain data from joystick movements in real time. Our results are a step towards brain-controlled robotics, prosthetics, and enhancing normal motor function. By accurately modeling brain activity, we take a step toward flexible brain-computer interfaces that generalize beyond predefined movements. To support the research community, we provide open source tools for both synthetic data generation and neural decoding, fostering reproducibility and accelerating progress. The project is available at https://www.808robots.com/projects/jenkins
- Abstract(参考訳): Project Jenkinsは、脳内の神経活動がロボットの動きにどのようにデコードされるか、また逆に、運動パターンを使って合成された神経データを生成する方法について研究している。
Jenkinsという名前のマカク猿の運動野および運動野野から記録された実際の神経データを用いて、デコード(脳信号をロボットアームの動きに変換する)とエンコーディング(与えられた動きに対応する脳活動のシミュレーション)のモデルを開発する。
脳シミュレーションと物理世界とのインターフェイスのために、我々はKoch v1.1リーダーと追従ロボットアームを利用した。
ユーザがリアルタイムでジョイスティックの動きから合成脳データを生成できるインタラクティブなWebコンソールを開発した。
私たちの研究結果は、脳制御ロボット、人工装具、正常運動機能の強化に向けた一歩です。
脳の活動を正確にモデル化することで、事前に定義された動作を超えて一般化される柔軟な脳とコンピュータのインターフェースへと進む。
研究コミュニティを支援するため、私たちは、合成データ生成とニューラルデコーディングの両方のためのオープンソースツールを提供し、再現性を高め、進歩を加速します。
このプロジェクトはhttps://www.808robots.com/projects/jenkinsで入手できる。
関連論文リスト
- HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Learning body models: from humans to humanoids [2.855485723554975]
人間と動物は、複数の感覚のモダリティからの情報を組み合わせて、複雑な体を制御し、成長、失敗、ツールの使用に適応する。
鍵となる基礎は、エージェント(人間、動物、ロボット)が開発してきた身体の内部表現である。
脳内での体モデルの操作のメカニズムは、ほとんど不明であり、出生後の経験からどのように構築されているかは、あまり分かっていない。
論文 参考訳(メタデータ) (2022-11-06T07:30:01Z) - BrainCog: A Spiking Neural Network based Brain-inspired Cognitive
Intelligence Engine for Brain-inspired AI and Brain Simulation [16.83583563493804]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされた人工知能と計算神経科学に広く注目を集めている。
脳にインスパイアされたAIと脳シミュレーションモデルを作成するために、脳にインスパイアされた認知知エンジン(BrainCog)を提案する。
論文 参考訳(メタデータ) (2022-07-18T11:53:31Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
神経科学の発見が、ロボット工学における現在の推定と制御アルゴリズムを改善する機会をいかに開放するかについて議論する。
本稿では,実体プラットフォーム上でのこのような計算モデルの開発から得られた実験と教訓を要約する。
論文 参考訳(メタデータ) (2021-05-10T10:59:38Z) - A toolbox for neuromorphic sensing in robotics [4.157415305926584]
ロボット上で利用可能なあらゆる種類のセンサからの入力信号をエンコードし、デコードするためのROS(Robot Operating System)ツールボックスを導入する。
このイニシアチブは、ニューロモルフィックAIのロボット統合を刺激し促進することを目的としている。
論文 参考訳(メタデータ) (2021-03-03T23:22:05Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
我々は,ラットで観察される行動と神経活動を再現する進化的アルゴリズムを用いて,生物学的に有意なリカレントニューラルネットワーク(RNN)でウェイトを進化させた。
提案手法は, 進化したRNNの動的活動が, 興味深く複雑な認知行動をどのように捉えているかを示す。
論文 参考訳(メタデータ) (2021-02-25T02:13:52Z) - Brain Co-Processors: Using AI to Restore and Augment Brain Function [2.3986080077861787]
人工知能(AI)を用いた統合フレームワークにおいて、デコードとエンコーディングを組み合わせた脳コプロセッサを導入する。
脳のコプロセッサは、脳損傷後のリハビリのためにヘビアン可塑性を誘導することや、麻痺した手足の再アニメーション、記憶の増強など、様々な用途に使用できる。
本稿では,ニューラルネットワーク,ディープラーニング,強化学習に基づく脳コプロセッサ開発のための新しいフレームワークについて述べる。
論文 参考訳(メタデータ) (2020-12-06T21:06:28Z) - Neurocoder: Learning General-Purpose Computation Using Stored Neural
Programs [64.56890245622822]
ニューロコーダ(Neurocoder)は、汎用計算機の全く新しいクラスである。
共有可能なモジュール型プログラムのセットから関連するプログラムを構成することで、データ応答性のある方法で“コード”を行う。
モジュールプログラムを学習し、パターンシフトを厳しく処理し、新しいプログラムが学習されると、古いプログラムを記憶する新しい能力を示す。
論文 参考訳(メタデータ) (2020-09-24T01:39:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。