論文の概要: BrainCog: A Spiking Neural Network based Brain-inspired Cognitive
Intelligence Engine for Brain-inspired AI and Brain Simulation
- arxiv url: http://arxiv.org/abs/2207.08533v2
- Date: Wed, 12 Jul 2023 02:03:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 20:37:00.553685
- Title: BrainCog: A Spiking Neural Network based Brain-inspired Cognitive
Intelligence Engine for Brain-inspired AI and Brain Simulation
- Title(参考訳): BrainCog:脳にインスパイアされたAIと脳シミュレーションのためのスパイクニューラルネットワークベースの認知人工知能エンジン
- Authors: Yi Zeng, Dongcheng Zhao, Feifei Zhao, Guobin Shen, Yiting Dong, Enmeng
Lu, Qian Zhang, Yinqian Sun, Qian Liang, Yuxuan Zhao, Zhuoya Zhao, Hongjian
Fang, Yuwei Wang, Yang Li, Xin Liu, Chengcheng Du, Qingqun Kong, Zizhe Ruan,
Weida Bi
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされた人工知能と計算神経科学に広く注目を集めている。
脳にインスパイアされたAIと脳シミュレーションモデルを作成するために、脳にインスパイアされた認知知エンジン(BrainCog)を提案する。
- 参考スコア(独自算出の注目度): 16.83583563493804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) have attracted extensive attentions in
Brain-inspired Artificial Intelligence and computational neuroscience. They can
be used to simulate biological information processing in the brain at multiple
scales. More importantly, SNNs serve as an appropriate level of abstraction to
bring inspirations from brain and cognition to Artificial Intelligence. In this
paper, we present the Brain-inspired Cognitive Intelligence Engine (BrainCog)
for creating brain-inspired AI and brain simulation models. BrainCog
incorporates different types of spiking neuron models, learning rules, brain
areas, etc., as essential modules provided by the platform. Based on these
easy-to-use modules, BrainCog supports various brain-inspired cognitive
functions, including Perception and Learning, Decision Making, Knowledge
Representation and Reasoning, Motor Control, and Social Cognition. These
brain-inspired AI models have been effectively validated on various supervised,
unsupervised, and reinforcement learning tasks, and they can be used to enable
AI models to be with multiple brain-inspired cognitive functions. For brain
simulation, BrainCog realizes the function simulation of decision-making,
working memory, the structure simulation of the Neural Circuit, and whole brain
structure simulation of Mouse brain, Macaque brain, and Human brain. An AI
engine named BORN is developed based on BrainCog, and it demonstrates how the
components of BrainCog can be integrated and used to build AI models and
applications. To enable the scientific quest to decode the nature of biological
intelligence and create AI, BrainCog aims to provide essential and easy-to-use
building blocks, and infrastructural support to develop brain-inspired spiking
neural network based AI, and to simulate the cognitive brains at multiple
scales. The online repository of BrainCog can be found at
https://github.com/braincog-x.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされた人工知能と計算神経科学に広く注目を集めている。
それらは、複数のスケールで脳内の生物学的情報処理をシミュレートするために使用できる。
さらに重要なのは、SNNが脳や認知から人工知能へのインスピレーションをもたらすための適切な抽象化レベルとして機能することです。
本稿では、脳にインスパイアされたAIと脳シミュレーションモデルを作成するために、脳にインスパイアされた認知知エンジン(BrainCog)を提案する。
BrainCogは、さまざまな種類のスパイキングニューロンモデル、学習規則、脳領域などをプラットフォームが提供する必須モジュールとして組み込んでいる。
こうした使い易いモジュールに基づいて、BrainCogは知覚と学習、意思決定、知識表現と推論、モーターコントロール、社会認知など、脳にインスパイアされた様々な認知機能をサポートしている。
これらの脳にインスパイアされたAIモデルは、様々な教師付き、教師なし、強化学習タスクで効果的に検証されており、複数の脳にインスパイアされた認知機能を持つAIモデルを可能にするために使用できる。
脳シミュレーションのためにBrainCogは、意思決定、ワーキングメモリ、ニューラルサーキットの構造シミュレーション、マウス脳、マカク脳、およびヒト脳の全脳構造シミュレーションの関数シミュレーションを実現する。
BORNという名のAIエンジンがBrainCogに基づいて開発されており、BrainCogのコンポーネントをどのように統合してAIモデルやアプリケーションを構築するかを示している。
BrainCogは、生物学的インテリジェンスの性質を解読し、AIを作成するための科学的な探求を可能にするため、脳にインスパイアされたスパイクニューラルネットワークベースのAIを開発し、認知脳を複数のスケールでシミュレートすることを目的としている。
braincogのオンラインリポジトリはhttps://github.com/braincog-xにある。
関連論文リスト
- Enhancing learning in artificial neural networks through cellular heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A differentiable brain simulator bridging brain simulation and
brain-inspired computing [3.5874544981360987]
脳シミュレーションは、脳の構造と機能を模倣する動的モデルを構築する。
脳にインスパイアされたコンピューティングは、脳の構造と機能から学習することで知的なシステムを発達させる。
BrainPy は JAX と XLA を用いて開発された微分可能な脳シミュレータである。
論文 参考訳(メタデータ) (2023-11-09T02:47:38Z) - Digital twin brain: a bridge between biological intelligence and
artificial intelligence [12.55159053727258]
本稿では,生物と人工知能のギャップを埋めるトランスフォーメーションプラットフォームとして,Digital Twin Brain(DTB)を提案する。
DTBは、ツインニング過程の基本となる脳構造、脳機能を生成する底層モデル、幅広い応用の3つの中核要素から構成される。
論文 参考訳(メタデータ) (2023-08-03T03:36:22Z) - Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey) [9.14580723964253]
AIモデルを使って脳についての洞察を得ることができるか?
脳記録に関する深層学習モデルの情報はどのようになっているか?
復号化モデルは、fMRIが与えられた刺激を再構成する逆問題を解決する。
近年,自然言語処理,コンピュータビジョン,音声に対するディープラーニングモデルの有効性に触発されて,ニューラルコーディングや復号化モデルが提案されている。
論文 参考訳(メタデータ) (2023-07-17T06:54:36Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
現在の脳-コンピュータインターフェース(BCI)技術は主に治療結果に関するものである。
近年,脳信号のデコードには人工知能(AI)と機械学習(ML)技術が用いられている。
クローズドループ,インテリジェント,低消費電力,小型化されたニューラルインターフェースの開発を想定する。
論文 参考訳(メタデータ) (2022-10-04T08:35:34Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Brain Co-Processors: Using AI to Restore and Augment Brain Function [2.3986080077861787]
人工知能(AI)を用いた統合フレームワークにおいて、デコードとエンコーディングを組み合わせた脳コプロセッサを導入する。
脳のコプロセッサは、脳損傷後のリハビリのためにヘビアン可塑性を誘導することや、麻痺した手足の再アニメーション、記憶の増強など、様々な用途に使用できる。
本稿では,ニューラルネットワーク,ディープラーニング,強化学習に基づく脳コプロセッサ開発のための新しいフレームワークについて述べる。
論文 参考訳(メタデータ) (2020-12-06T21:06:28Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。