A Semantic and Clean-label Backdoor Attack against Graph Convolutional Networks
- URL: http://arxiv.org/abs/2503.14922v1
- Date: Wed, 19 Mar 2025 06:04:55 GMT
- Title: A Semantic and Clean-label Backdoor Attack against Graph Convolutional Networks
- Authors: Jiazhu Dai, Haoyu Sun,
- Abstract summary: Graph Convolutional Networks (GCNs) have shown excellent performance in graph-structured tasks such as node classification and graph classification.<n>Recent research has shown that GCNs are vulnerable to a new type of threat called the backdoor attack.<n>Clean-label backdoor attack and semantic backdoor attack are two new backdoor attacks to Deep Neural Networks (DNNs)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) have shown excellent performance in graph-structured tasks such as node classification and graph classification. However, recent research has shown that GCNs are vulnerable to a new type of threat called the backdoor attack, where the adversary can inject a hidden backdoor into the GCNs so that the backdoored model performs well on benign samples, whereas its prediction will be maliciously changed to the attacker-specified target label if the hidden backdoor is activated by the attacker-defined trigger. Clean-label backdoor attack and semantic backdoor attack are two new backdoor attacks to Deep Neural Networks (DNNs), they are more imperceptible and have posed new and serious threats. The semantic and clean-label backdoor attack is not fully explored in GCNs. In this paper, we propose a semantic and clean-label backdoor attack against GCNs under the context of graph classification to reveal the existence of this security vulnerability in GCNs. Specifically, SCLBA conducts an importance analysis on graph samples to select one type of node as semantic trigger, which is then inserted into the graph samples to create poisoning samples without changing the labels of the poisoning samples to the attacker-specified target label. We evaluate SCLBA on multiple datasets and the results show that SCLBA can achieve attack success rates close to 99% with poisoning rates of less than 3%, and with almost no impact on the performance of model on benign samples.
Related papers
- Robustness Inspired Graph Backdoor Defense [30.82433380830665]
Graph Neural Networks (GNNs) have achieved promising results in tasks such as node classification and graph classification.
Recent studies reveal that GNNs are vulnerable to backdoor attacks, posing a significant threat to their real-world adoption.
We propose using random edge dropping to detect backdoors and theoretically show that it can efficiently distinguish poisoned nodes from clean ones.
arXiv Detail & Related papers (2024-06-14T08:46:26Z) - A Clean-graph Backdoor Attack against Graph Convolutional Networks with Poisoned Label Only [0.0]
This paper proposes a clean-graph backdoor attack against GCNs (CBAG) in the node classification task.
By poisoning the training labels, a hidden backdoor is injected into the GCNs model.
Experimental results show that our clean graph backdoor can achieve 99% attack success rate.
arXiv Detail & Related papers (2024-04-19T08:21:54Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - A semantic backdoor attack against Graph Convolutional Networks [0.0]
A semantic backdoor attack is a new type of backdoor attack on deep neural networks (DNNs)
We propose a semantic backdoor attack against Graph convolutional networks (GCNs) to reveal the existence of this security vulnerability in GCNs.
arXiv Detail & Related papers (2023-02-28T07:11:55Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Defending Against Backdoor Attack on Graph Nerual Network by
Explainability [7.147386524788604]
We propose the first backdoor detection and defense method on GNN.
For graph data, current backdoor attack focus on manipulating the graph structure to inject the trigger.
We find that there are apparent differences between benign samples and malicious samples in some explanatory evaluation metrics.
arXiv Detail & Related papers (2022-09-07T03:19:29Z) - Explainability-based Backdoor Attacks Against Graph Neural Networks [9.179577599489559]
There are numerous works on backdoor attacks on neural networks, but only a few works consider graph neural networks (GNNs)
We apply two powerful GNN explainability approaches to select the optimal trigger injecting position to achieve two attacker objectives -- high attack success rate and low clean accuracy drop.
Our empirical results on benchmark datasets and state-of-the-art neural network models demonstrate the proposed method's effectiveness.
arXiv Detail & Related papers (2021-04-08T10:43:40Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - Backdoor Attacks to Graph Neural Networks [73.56867080030091]
We propose the first backdoor attack to graph neural networks (GNN)
In our backdoor attack, a GNN predicts an attacker-chosen target label for a testing graph once a predefined subgraph is injected to the testing graph.
Our empirical results show that our backdoor attacks are effective with a small impact on a GNN's prediction accuracy for clean testing graphs.
arXiv Detail & Related papers (2020-06-19T14:51:01Z) - AN-GCN: An Anonymous Graph Convolutional Network Defense Against
Edge-Perturbing Attack [53.06334363586119]
Recent studies have revealed the vulnerability of graph convolutional networks (GCNs) to edge-perturbing attacks.
We first generalize the formulation of edge-perturbing attacks and strictly prove the vulnerability of GCNs to such attacks in node classification tasks.
Following this, an anonymous graph convolutional network, named AN-GCN, is proposed to counter edge-perturbing attacks.
arXiv Detail & Related papers (2020-05-06T08:15:24Z) - Defending against Backdoor Attack on Deep Neural Networks [79.0484137934143]
We study the so-called textitbackdoor attack, which injects a backdoor trigger to a small portion of training data.
Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
arXiv Detail & Related papers (2020-02-26T02:03:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.