A Language Vision Model Approach for Automated Tumor Contouring in Radiation Oncology
- URL: http://arxiv.org/abs/2503.14933v1
- Date: Wed, 19 Mar 2025 06:41:37 GMT
- Title: A Language Vision Model Approach for Automated Tumor Contouring in Radiation Oncology
- Authors: Yi Luo, Hamed Hooshangnejad, Xue Feng, Gaofeng Huang, Xiaojian Chen, Rui Zhang, Quan Chen, Wil Ngwa, Kai Ding,
- Abstract summary: Lung cancer ranks as the leading cause of cancer-related mortality worldwide.<n>The Oncology Contouring Copilot system is developed to leverage oncologist expertise for precise tumor contouring.
- Score: 12.872083704552258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence(AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), offers potential solutions yet is challenged by high false positive rates. Purpose: The Oncology Contouring Copilot (OCC) system is developed to leverage oncologist expertise for precise tumor contouring using textual descriptions, aiming to increase the efficiency of oncological workflows by combining the strengths of AI with human oversight. Methods: Our OCC system initially identifies nodule candidates from CT scans. Employing Language Vision Models (LVMs) like GPT-4V, OCC then effectively reduces false positives with clinical descriptive texts, merging textual and visual data to automate tumor delineation, designed to elevate the quality of oncology care by incorporating knowledge from experienced domain experts. Results: Deployments of the OCC system resulted in a significant reduction in the false discovery rate by 35.0%, a 72.4% decrease in false positives per scan, and an F1-score of 0.652 across our dataset for unbiased evaluation. Conclusions: OCC represents a significant advance in oncology care, particularly through the use of the latest LVMs to improve contouring results by (1) streamlining oncology treatment workflows by optimizing tumor delineation, reducing manual processes; (2) offering a scalable and intuitive framework to reduce false positives in radiotherapy planning using LVMs; (3) introducing novel medical language vision prompt techniques to minimize LVMs hallucinations with ablation study, and (4) conducting a comparative analysis of LVMs, highlighting their potential in addressing medical language vision challenges.
Related papers
- AI Assisted Cervical Cancer Screening for Cytology Samples in Developing Countries [0.18472148461613155]
Cervical cancer remains a significant health challenge, with high incidence and mortality rates.
Conventional Liquid-Based Cytology(LBC) is a labor-intensive process, requires expert pathologists and is highly prone to errors.
This paper introduces an innovative approach that integrates low-cost biological microscopes with our simple and efficient AI algorithms for automated whole-slide analysis.
arXiv Detail & Related papers (2025-04-29T05:18:59Z) - ONCOPILOT: A Promptable CT Foundation Model For Solid Tumor Evaluation [3.8763197858217935]
ONCOPILOT is an interactive radiological foundation model trained on approximately 7,500 CT scans covering the whole body.
It performs 3D tumor segmentation using visual prompts like point-click and bounding boxes, outperforming state-of-the-art models.
ONCOPILOT also accelerates measurement processes and reduces inter-reader variability.
arXiv Detail & Related papers (2024-10-10T13:36:49Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Large-scale cervical precancerous screening via AI-assisted cytology whole slide image analysis [11.148919818020495]
Cervical Cancer continues to be the leading gynecological malignancy, posing a persistent threat to women's health on a global scale.
Early screening via Whole Slide Image (WSI) diagnosis is critical to prevent this Cancer progression and improve survival rate.
But pathologist's single test suffers inevitable false negative due to the immense number of cells that need to be reviewed within a WSI.
arXiv Detail & Related papers (2024-07-28T15:29:07Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - LLM-driven Multimodal Target Volume Contouring in Radiation Oncology [46.23891509553877]
Large language models (LLMs) can facilitate the integration of the textural information and images.
We present a novel LLM-driven multimodal AI, namely LLMSeg, that is applicable to the challenging task of target volume contouring for radiation therapy.
We demonstrate that the proposed model exhibits markedly improved performance compared to conventional unimodal AI models.
arXiv Detail & Related papers (2023-11-03T13:38:42Z) - Detecting Histologic & Clinical Glioblastoma Patterns of Prognostic
Relevance [6.281092892485014]
Glioblastoma is the most common and aggressive malignant adult tumor of the central nervous system.
Since adopting the current standard-of-care treatment 18 years ago, no substantial prognostic improvement has been noticed.
Here, we focus on identifying prognostically relevant characteristics from H&E stained WSI & clinical data relating to OS.
arXiv Detail & Related papers (2023-02-01T18:56:09Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.