論文の概要: 3D Engine-ready Photorealistic Avatars via Dynamic Textures
- arxiv url: http://arxiv.org/abs/2503.14943v1
- Date: Wed, 19 Mar 2025 07:19:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:23:42.706954
- Title: 3D Engine-ready Photorealistic Avatars via Dynamic Textures
- Title(参考訳): 動的テクスチャによる3次元エンジン対応光リアルアバター
- Authors: Yifan Wang, Ivan Molodetskikh, Ondrej Texler, Dimitar Dinev,
- Abstract要約: 本稿では,標準的な3Dアセットを用いて,明示的に表現された3Dアバターを構築するエンド・ツー・エンドパイプラインを提案する。
私たちのキーとなるアイデアは、動的に生成されるテクスチャを使用して現実性を高め、基盤となるメッシュ幾何学における欠陥を視覚的に隠蔽することです。
- 参考スコア(独自算出の注目度): 6.040118855896928
- License:
- Abstract: As the digital and physical worlds become more intertwined, there has been a lot of interest in digital avatars that closely resemble their real-world counterparts. Current digitization methods used in 3D production pipelines require costly capture setups, making them impractical for mass usage among common consumers. Recent academic literature has found success in reconstructing humans from limited data using implicit representations (e.g., voxels used in NeRFs), which are able to produce impressive videos. However, these methods are incompatible with traditional rendering pipelines, making it difficult to use them in applications such as games. In this work, we propose an end-to-end pipeline that builds explicitly-represented photorealistic 3D avatars using standard 3D assets. Our key idea is the use of dynamically-generated textures to enhance the realism and visually mask deficiencies in the underlying mesh geometry. This allows for seamless integration with current graphics pipelines while achieving comparable visual quality to state-of-the-art 3D avatar generation methods.
- Abstract(参考訳): デジタルと物理的な世界がより絡み合うようになるにつれ、デジタルアバターへの関心は現実のアバターとよく似ている。
現在の3D生産パイプラインで使われているデジタル化手法は、コストがかかるセットアップを必要とするため、一般消費者の大量使用には実用的ではない。
近年の研究では、暗黙の表現(例えば、NeRFで使用されるボクセル)を使って、限られたデータから人間の再構築に成功した。
しかし、これらの手法は従来のレンダリングパイプラインと互換性がなく、ゲームのようなアプリケーションで使用するのが困難である。
本研究では,標準的な3Dアセットを用いて,明示的に表現された光リアルな3Dアバターを構築するエンドツーエンドパイプラインを提案する。
私たちのキーとなるアイデアは、動的に生成されるテクスチャを使用して現実性を高め、基盤となるメッシュ幾何学における欠陥を視覚的に隠蔽することです。
これにより、現在のグラフィックスパイプラインとシームレスに統合でき、最先端の3Dアバター生成手法に匹敵する視覚的品質を実現することができる。
関連論文リスト
- UltrAvatar: A Realistic Animatable 3D Avatar Diffusion Model with Authenticity Guided Textures [80.047065473698]
幾何学の忠実度を高めたUltrAvatarと呼ばれる新しい3次元アバター生成手法を提案し,光を必要とせずに物理ベースレンダリング(PBR)テクスチャの質を向上する。
提案手法の有効性とロバスト性を実証し,実験において最先端の手法よりも高い性能を示した。
論文 参考訳(メタデータ) (2024-01-20T01:55:17Z) - ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering [62.81677824868519]
本稿では,動的人間をリアルタイムに写実的にレンダリングするためのアニマタブルなガウススプラッティング手法を提案する。
我々は、被服をアニマタブルな3Dガウスとしてパラメータ化し、画像空間に効率よく切り込み、最終的なレンダリングを生成する。
我々は、ポーズ制御可能なアバターの競合手法を用いてASHをベンチマークし、我々の手法が既存のリアルタイムメソッドよりも大きなマージンで優れており、オフラインメソッドよりも同等またはそれ以上の結果を示すことを示した。
論文 参考訳(メタデータ) (2023-12-10T17:07:37Z) - Articulated 3D Head Avatar Generation using Text-to-Image Diffusion
Models [107.84324544272481]
多様な頭部アバターを合成する能力は、拡張現実、撮影、教育など、多くの応用に不可欠である。
テキスト誘導型3Dオブジェクト生成に関する最近の研究は、これらのニーズに対処する上で大きな可能性を秘めている。
拡散に基づく頭部アバターは,この課題に対する最先端のアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-10T19:15:32Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
本稿では,複雑なトポロジ,リッチな幾何学的ディテール,高忠実度テクスチャを備えたExplicit Textured 3Dメッシュを直接生成する生成モデルであるGET3Dを紹介する。
GET3Dは、車、椅子、動物、バイク、人間キャラクターから建物まで、高品質な3Dテクスチャメッシュを生成することができる。
論文 参考訳(メタデータ) (2022-09-22T17:16:19Z) - Texture Generation Using Graph Generative Adversarial Network And
Differentiable Rendering [0.6439285904756329]
既存の3次元メッシュモデルのための新しいテクスチャ合成は、シミュレータのフォトリアルアセット生成に向けた重要なステップである。
既存の手法は、カメラの観点からの3次元空間の投影である2次元画像空間で本質的に機能する。
本稿では,BlenderやUnreal Engineといったツールを用いて,与えられた3Dメッシュモデルに直接統合可能なテクスチャを生成可能なGGAN(Graph Generative Adversarial Network)という新しいシステムを提案する。
論文 参考訳(メタデータ) (2022-06-17T04:56:03Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z) - SMPLpix: Neural Avatars from 3D Human Models [56.85115800735619]
従来のレンダリングと画素空間で動作する最新の生成ネットワークのギャップを埋める。
我々は、スパースな3Dメッシュ頂点をフォトリアリスティックな画像に変換するネットワークを訓練する。
我々は,フォトリアリズムのレベルとレンダリング効率の両面で,従来の微分可能よりも優位性を示す。
論文 参考訳(メタデータ) (2020-08-16T10:22:00Z) - Photorealism in Driving Simulations: Blending Generative Adversarial
Image Synthesis with Rendering [0.0]
我々は、運転シミュレーションの視覚的忠実度を改善するために、ハイブリッドな生成型ニューラルネットワークパイプラインを導入する。
テクスチャのない単純なオブジェクトモデルからなる3次元シーンから2次元のセマンティック画像を生成する。
これらのセマンティックイメージは、現実の運転シーンで訓練された最先端のジェネレーティブ・アドリア・ネットワーク(GAN)を用いて、フォトリアリスティックなRGBイメージに変換される。
論文 参考訳(メタデータ) (2020-07-31T03:25:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。