論文の概要: Neuro Symbolic Knowledge Reasoning for Procedural Video Question Answering
- arxiv url: http://arxiv.org/abs/2503.14957v1
- Date: Wed, 19 Mar 2025 07:49:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:23:39.608046
- Title: Neuro Symbolic Knowledge Reasoning for Procedural Video Question Answering
- Title(参考訳): 手続き型ビデオ質問応答のための神経記号的知識推論
- Authors: Thanh-Son Nguyen, Hong Yang, Tzeh Yuan Neoh, Hao Zhang, Ee Yeo Keat, Basura Fernando,
- Abstract要約: 本稿では、複雑な推論に手続き的知識を活用するためのモデルに挑戦する、新しいビデオ質問応答データセットを提案する。
視覚的実体を認識し、仮説を生成し、文脈的、因果的、反事実的推論を実行する必要がある。
- 参考スコア(独自算出の注目度): 26.013577822475856
- License:
- Abstract: This paper introduces a new video question-answering (VQA) dataset that challenges models to leverage procedural knowledge for complex reasoning. It requires recognizing visual entities, generating hypotheses, and performing contextual, causal, and counterfactual reasoning. To address this, we propose neuro symbolic reasoning module that integrates neural networks and LLM-driven constrained reasoning over variables for interpretable answer generation. Results show that combining LLMs with structured knowledge reasoning with logic enhances procedural reasoning on the STAR benchmark and our dataset. Code and dataset at https://github.com/LUNAProject22/KML soon.
- Abstract(参考訳): 本稿では、複雑な推論に手続き的知識を活用するためにモデルに挑戦するビデオ質問応答(VQA)データセットを提案する。
視覚的実体を認識し、仮説を生成し、文脈的、因果的、反事実的推論を実行する必要がある。
そこで本研究では,ニューラルネットワークとLLM駆動型制約推論を統合したニューラルシンボリック推論モジュールを提案する。
その結果,LLMと構造化知識推論とを論理と組み合わせることで,STARベンチマークとデータセットの手続き的推論が促進されることがわかった。
コードとデータセットはhttps://github.com/LUNAProject22/KMLですぐに公開されます。
関連論文リスト
- An Investigation of Neuron Activation as a Unified Lens to Explain Chain-of-Thought Eliciting Arithmetic Reasoning of LLMs [8.861378619584093]
大型言語モデル (LLM) は、Chain-of-Thoughtプロンプトによって引き起こされるときに強い算術的推論能力を示す。
我々は、先行研究による観察を統一的に説明するために、レンズとしての「ニューロン活性化」について検討する。
論文 参考訳(メタデータ) (2024-06-18T05:49:24Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
カリキュラムベースの論理認識型チューニングフレームワークであるLACTを提案する。
具体的には、任意の一階論理クエリをバイナリツリー分解によって拡張する。
広く使われているデータセットに対する実験では、LATは高度な手法よりも大幅に改善(平均+5.5% MRRスコア)し、新しい最先端技術を実現している。
論文 参考訳(メタデータ) (2024-05-02T18:12:08Z) - IID Relaxation by Logical Expressivity: A Research Agenda for Fitting Logics to Neurosymbolic Requirements [50.57072342894621]
本稿では、ニューロシンボリック・ユースケースにおける既知のデータ依存と分布制約を利用する利点について論じる。
これは、ニューロシンボリックな背景知識と、その論理に必要とされる表現性に関する一般的な疑問を伴う新しい研究課題を開く。
論文 参考訳(メタデータ) (2024-04-30T12:09:53Z) - keqing: knowledge-based question answering is a nature chain-of-thought
mentor of LLM [27.76205400533089]
大規模言語モデル(LLM)は様々な自然言語処理(NLP)タスク、特に質問応答において顕著な性能を示した。
本稿では,知識グラフ上の質問関連構造化情報を取得するために,ChatGPTなどのLLMを支援する新しいフレームワークを提案する。
KBQAデータセットの実験結果から,Keqingは競合性能を達成でき,各質問に答える論理を説明できることがわかった。
論文 参考訳(メタデータ) (2023-12-31T08:39:04Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
本稿では,証明可能な推論能力を備えた複雑なクエリを用いたエンドツーエンド学習を支援するニューラルシンボリック手法を提案する。
これまでに検討されていない10種類の新しいクエリを含む新しいデータセットを開発する。
提案手法は,新しいデータセットにおいて先行手法を著しく上回り,既存データセットにおける先行手法を同時に上回っている。
論文 参考訳(メタデータ) (2023-04-14T11:35:35Z) - Neural-Symbolic Integration for Interactive Learning and Conceptual
Grounding [1.14219428942199]
本稿では,抽象概念の説明と対話型学習のためのニューラルシンボリック統合を提案する。
ユーザとのインタラクションは、ニューラルモデルのリビジョンを確認または拒否する。
このアプローチはLogic NetworkフレームワークとConcept Activation Vectorsを使って説明され、Conal Neural Networkに適用される。
論文 参考訳(メタデータ) (2021-12-22T11:24:48Z) - Question Answering over Knowledge Bases by Leveraging Semantic Parsing
and Neuro-Symbolic Reasoning [73.00049753292316]
本稿では,意味解析と推論に基づくニューロシンボリック質問回答システムを提案する。
NSQAはQALD-9とLC-QuAD 1.0で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-12-03T05:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。