論文の概要: StyleLoco: Generative Adversarial Distillation for Natural Humanoid Robot Locomotion
- arxiv url: http://arxiv.org/abs/2503.15082v1
- Date: Wed, 19 Mar 2025 10:27:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 17:45:40.928118
- Title: StyleLoco: Generative Adversarial Distillation for Natural Humanoid Robot Locomotion
- Title(参考訳): StyleLoco: 自然なヒューマノイドロボットロコモーションのための生成的対向蒸留
- Authors: Le Ma, Ziyu Meng, Tengyu Liu, Yuhan Li, Ran Song, Wei Zhang, Siyuan Huang,
- Abstract要約: StyleLocoは、ヒューマノイドの移動を学ぶための新しいフレームワークである。
強化学習の機敏さと人間のような運動の自然な流動性を組み合わせる。
StyleLocoは、ヒューマノイドロボットが多様な移動作業を行うことを可能にすることを実証する。
- 参考スコア(独自算出の注目度): 31.30409161905949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humanoid robots are anticipated to acquire a wide range of locomotion capabilities while ensuring natural movement across varying speeds and terrains. Existing methods encounter a fundamental dilemma in learning humanoid locomotion: reinforcement learning with handcrafted rewards can achieve agile locomotion but produces unnatural gaits, while Generative Adversarial Imitation Learning (GAIL) with motion capture data yields natural movements but suffers from unstable training processes and restricted agility. Integrating these approaches proves challenging due to the inherent heterogeneity between expert policies and human motion datasets. To address this, we introduce StyleLoco, a novel two-stage framework that bridges this gap through a Generative Adversarial Distillation (GAD) process. Our framework begins by training a teacher policy using reinforcement learning to achieve agile and dynamic locomotion. It then employs a multi-discriminator architecture, where distinct discriminators concurrently extract skills from both the teacher policy and motion capture data. This approach effectively combines the agility of reinforcement learning with the natural fluidity of human-like movements while mitigating the instability issues commonly associated with adversarial training. Through extensive simulation and real-world experiments, we demonstrate that StyleLoco enables humanoid robots to perform diverse locomotion tasks with the precision of expertly trained policies and the natural aesthetics of human motion, successfully transferring styles across different movement types while maintaining stable locomotion across a broad spectrum of command inputs.
- Abstract(参考訳): ヒューマノイドロボットは、様々な速度や地形の自然移動を確保しながら、幅広い移動能力を獲得することが期待されている。
既存の方法は、ヒューマノイドの移動を学ぶ上で、基本的なジレンマに遭遇する。手作りの報酬による強化学習は、アジャイルの移動を達成できるが、不自然な歩行を生み出す。
これらのアプローチを統合することは、専門家のポリシーと人間のモーションデータセットの間に固有の不均一性があることから、難しいことが証明されている。
そこで我々は,このギャップをGAD(Generative Adversarial Distillation)プロセスを通じて橋渡しする,新たな2段階フレームワークであるStyleLocoを紹介した。
私たちのフレームワークは、強化学習を使用して教師の方針をトレーニングして、アジャイルとダイナミックな移動を実現することから始まります。
次に、教師ポリシーとモーションキャプチャーデータの両方から、異なる差別者が同時にスキルを抽出するマルチ差別化アーキテクチャを採用する。
このアプローチは、強化学習の俊敏性と人間のような運動の自然な流動性とを効果的に組み合わせ、敵の訓練に共通する不安定性問題を緩和する。
シミュレーションや実世界の実験を通じて、StyleLocoは、高度に訓練されたポリシーと人間の動作の自然な美学の精度で多様な動作タスクを実行し、異なる動作タイプ間でスタイルの転送を成功させながら、広範囲のコマンド入力の安定な移動を維持できることを示した。
関連論文リスト
- Natural Humanoid Robot Locomotion with Generative Motion Prior [21.147249860051616]
本稿では,ヒューマノイドロボットの移動作業のきめ細かい監督を行う新しいジェネレーティブ・モーション・プライオリティ(GMP)を提案する。
我々は、条件付き変分自動エンコーダに基づいて、ロボットの将来の自然参照動作を予測するために、生成モデルをオフラインでトレーニングする。
政策訓練の間、生成運動は凍結したオンラインモーションジェネレータとして機能し、軌道レベルで正確に包括的な監視を提供する。
論文 参考訳(メタデータ) (2025-03-12T03:04:15Z) - Humanoid Whole-Body Locomotion on Narrow Terrain via Dynamic Balance and Reinforcement Learning [54.26816599309778]
動的バランスと強化学習(RL)に基づく新しい全身移動アルゴリズムを提案する。
具体的には,ZMP(Zero-Moment Point)駆動の報酬とタスク駆動の報酬を,全身のアクター批判的枠組みで拡張した尺度を活用することで,動的バランス機構を導入する。
フルサイズのUnitree H1-2ロボットによる実験により、非常に狭い地形でのバランスを維持するための手法の有効性が検証された。
論文 参考訳(メタデータ) (2025-02-24T14:53:45Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
本研究では,特定の歩行を構成する主要姿勢位相を捕捉する潜在空間を学習することにより,制御器のロバスト性を高めることが重要であることを示す。
本研究では,ドライブ信号マップの特定の特性が,歩幅,歩幅,立位などの歩行パラメータに直接関係していることを示す。
生成モデルを使用することで、障害の検出と緩和が容易になり、汎用的で堅牢な計画フレームワークを提供する。
論文 参考訳(メタデータ) (2022-05-02T19:49:53Z) - Next Steps: Learning a Disentangled Gait Representation for Versatile
Quadruped Locomotion [69.87112582900363]
現在のプランナーは、ロボットが動いている間、キー歩行パラメータを連続的に変更することはできない。
本研究では、特定の歩行を構成する重要な姿勢位相を捉える潜在空間を学習することにより、この制限に対処する。
本研究では, 歩幅, 歩幅, 立位など, 歩行パラメータに直接対応した駆動信号マップの具体的特性を示す。
論文 参考訳(メタデータ) (2021-12-09T10:02:02Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
本研究は,バネ装荷逆振り子モデルを用いて学習プロセスを導くことで,移動における現実性を保証するための汎用的アプローチを提案する。
モデルのない設定であっても、2足歩行ロボットと4足歩行ロボットに対して、学習したポリシーが現実的でエネルギー効率のよい移動歩行を生成できることを示す実験結果を示す。
論文 参考訳(メタデータ) (2021-10-28T10:14:47Z) - Learning Riemannian Manifolds for Geodesic Motion Skills [19.305285090233063]
ロボットが新しいスキルを習得し、目に見えない状況に適応するための学習フレームワークを開発する。
本研究では,測地運動技術を用いて,データ多様体上の任意の地点をロボットがどう移動させるかを示す。
ロボットは、精巧な動きパターンを特徴とする現実的なスキルを十分に学習し、再現する7-DoFロボットマニピュレータを用いて、学習フレームワークをテストする。
論文 参考訳(メタデータ) (2021-06-08T13:24:54Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
本研究では、実世界の二足歩行ロボットに、モーションキャプチャーデータから直接の動きを教えるための強化学習に基づく手法を提案する。
本手法は,シミュレーション環境下でのトレーニングから,物理ロボット上での実行へシームレスに移行する。
本研究では,ダイナミックウォークサイクルから複雑なバランスや手振りに至るまでの動作を内製したヒューマノイドロボットについて実演する。
論文 参考訳(メタデータ) (2021-05-26T00:49:37Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
足の移動はロボティクスの操作領域を劇的に拡張することができる。
足の移動のための従来のコントローラーは、運動プリミティブと反射の実行を明示的にトリガーする精巧な状態マシンに基づいている。
ここでは、自然環境に挑戦する際の足の移動に対して、徹底的に頑健な制御器を提案する。
論文 参考訳(メタデータ) (2020-10-21T19:11:20Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
動物の多様でアジャイルな運動スキルを再現することは、ロボット工学における長年の課題である。
そこで本研究では,現実世界の動物を模倣することで,足のロボットがアジャイルな運動能力を学ぶことができる模倣学習システムを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。