論文の概要: VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
- arxiv url: http://arxiv.org/abs/2503.15108v1
- Date: Wed, 19 Mar 2025 11:05:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:24:28.796599
- Title: VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
- Title(参考訳): VIPER: 逐次意思決定のための視覚認識と説明可能な推論
- Authors: Mohamed Salim Aissi, Clemence Grislain, Mohamed Chetouani, Olivier Sigaud, Laure Soulier, Nicolas Thome,
- Abstract要約: VIPERはマルチモーダル命令ベースの計画のための新しいフレームワークである。
VLMベースの知覚とLLMベースの推論を統合する。
その結果、VIPERは最先端のビジュアル・インストラクション・ベース・プランナーよりも優れていた。
- 参考スコア(独自算出の注目度): 21.61801132083334
- License:
- Abstract: While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
- Abstract(参考訳): 大規模言語モデル (LLMs) はテキストによる推論に優れ、視覚言語モデル (VLMs) は視覚的知覚に非常に効果的であるが、これらのモデルを視覚的指示に基づく計画に応用することは依然として広くオープンな問題である。
本稿では,VLMに基づく認識とLLMに基づく推論を統合したマルチモーダル・インストラクション・ベース・プランニングのための新しいフレームワークであるVIPERを紹介する。
提案手法では,凍結したVLMが画像観察のテキスト記述を生成するモジュールパイプラインを用いて,その処理をLCMポリシーで行い,タスク目標に基づいて動作を予測する。
我々は行動クローニングと強化学習を用いて推論モジュールを微調整し、エージェントの意思決定能力を向上させる。
ALFWorldベンチマークの実験では、VIPERは最先端のビジュアル命令ベースのプランナよりも大幅に優れており、純粋にテキストベースのオーラクルとのギャップを狭めている。
テキストを中間表現として活用することにより、VIPERは説明可能性を高め、知覚と推論コンポーネントのきめ細かい分析の道を開く。
関連論文リスト
- Progressive Multi-granular Alignments for Grounded Reasoning in Large Vision-Language Models [19.054780489639793]
本稿では,プログレッシブ・マルチグラニュラー・ビジョン・ランゲージアライメント(PromViL)を紹介する。
提案手法は, 単純な概念から複雑な概念まで, 多モードアライメントの階層構造を構築する。
テキスト記述と対応する視覚領域を段階的に整合させることで,低レベルからの文脈情報を活用して高レベルな推論を行う。
論文 参考訳(メタデータ) (2024-12-11T06:21:33Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
社会的関係推論は、友人、配偶者、同僚などの関係カテゴリを画像から識別することを目的としている。
まず、VFM(Vision Foundation Models)の知覚能力と、モジュラーフレームワーク内でのLLM(Large Language Models)の推論能力を組み合わせた、シンプルだが巧妙な名前のフレームワークを提示する。
論文 参考訳(メタデータ) (2024-10-28T18:10:26Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
論文 参考訳(メタデータ) (2024-09-21T02:10:19Z) - ExoViP: Step-by-step Verification and Exploration with Exoskeleton Modules for Compositional Visual Reasoning [27.725814615823687]
本研究では,計画段階と実行段階の誤りを訂正する"plug-and-play"手法であるExoViPを提案する。
我々は、現在の視覚言語プログラミング手法を強化するために、検証モジュールを"exoskeletons"として採用する。
論文 参考訳(メタデータ) (2024-08-05T03:22:10Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-FormerはCLとMIMの相補的な強度を利用するために設計された軽量トランスフォーマーモジュールである。
X-Formerは、2つの凍結した視覚エンコーダから視覚言語表現学習とマルチモーダル・マルチモーダル生成学習をブートストラップする。
さらに、凍結したLLMから視覚から言語への生成学習をブートストラップし、X-Formerの視覚的特徴をLLMで解釈できるようにする。
論文 参考訳(メタデータ) (2024-07-18T18:39:54Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding [65.12464615430036]
本稿では,Large Language Models (LLM) の推論能力に基づくビデオ理解・推論フレームワーク (VURF) を提案する。
ビデオタスクのコンテキストにおいてLLMの実用性を拡張し,最小限のインプットとアウトプットのデモをコンテキストフレームワーク内で一般化する,新たなアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-21T18:00:00Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
本稿では,視覚的特徴を大規模多モードモデルの語彙上の確率分布にマッピングする視覚トークンの概念を提案する。
さらに、LMM内の意味空間における視覚的特徴の分布と、視覚情報を表現するためにテキスト埋め込みを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2024-03-12T14:58:52Z) - A Picture is Worth a Thousand Words: Language Models Plan from Pixels [53.85753597586226]
計画は, 実環境下で長時間の作業を行う人工エージェントの重要な機能である。
本研究では,事前学習型言語モデル(PLM)を用いて,具体的視覚環境におけるテキスト命令からのプランシーケンスを推論する。
論文 参考訳(メタデータ) (2023-03-16T02:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。