論文の概要: Enhancing Advanced Visual Reasoning Ability of Large Language Models
- arxiv url: http://arxiv.org/abs/2409.13980v1
- Date: Sat, 21 Sep 2024 02:10:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:17:38.611462
- Title: Enhancing Advanced Visual Reasoning Ability of Large Language Models
- Title(参考訳): 大規模言語モデルの高度なビジュアル推論能力の強化
- Authors: Zhiyuan Li, Dongnan Liu, Chaoyi Zhang, Heng Wang, Tengfei Xue, Weidong Cai,
- Abstract要約: VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
- 参考スコア(独自算出の注目度): 20.32900494896848
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning, challenging models' advanced reasoning ability. Traditional Vision-Language Models (VLMs) perform well in visual perception tasks while struggling with complex reasoning scenarios. Conversely, Large Language Models (LLMs) demonstrate robust text reasoning capabilities; however, they lack visual acuity. To bridge this gap, we propose Complex Visual Reasoning Large Language Models (CVR-LLM), capitalizing on VLMs' visual perception proficiency and LLMs' extensive reasoning capability. Unlike recent multimodal large language models (MLLMs) that require a projection layer, our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop and leverages LLMs' text knowledge for accurate predictions without extra training. We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs' contextual understanding and reasoning. Additionally, we introduce Chain-of-Comparison (CoC), a step-by-step comparison technique enabling contrasting various aspects of predictions. Our CVR-LLM presents the first comprehensive study across a wide array of complex visual reasoning tasks and achieves SOTA performance among all.
- Abstract(参考訳): VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論、挑戦モデルの高度な推論能力のための新しいベンチマークを引き起こした。
従来の視覚言語モデル(VLM)は、複雑な推論シナリオで苦労しながら、視覚知覚タスクでうまく機能する。
逆に、Large Language Models (LLM) は、堅牢なテキスト推論能力を示しているが、視力に欠ける。
このギャップを埋めるために,VLMの視覚知覚能力とLLMの広範囲な推論能力を活かした複合視覚推論大言語モデル(CVR-LLM)を提案する。
プロジェクション層を必要とする近年のマルチモーダル大言語モデル(MLLM)とは異なり,本手法では,反復的自己修正ループを用いて画像の詳細なコンテキスト認識記述に変換し,LLMのテキスト知識を余分なトレーニングなしで正確な予測に活用する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
さらに,予測の様々な側面を対比するステップ・バイ・ステップ比較手法であるChain-of-Comparison (CoC)を導入する。
我々のCVR-LLMは、様々な複雑な視覚的推論タスクにまたがる、初めての総合的な研究であり、その中からSOTAのパフォーマンスを達成している。
関連論文リスト
- Visual Prompting in Multimodal Large Language Models: A Survey [95.75225825537528]
MLLM(Multimodal large language model)は、視覚機能を備えた事前訓練された多言語モデル(LLM)である。
ビジュアルプロンプトはよりきめ細かな自由形式のビジュアルインストラクションのために現れた。
本稿では,視覚的プロンプト,即時生成,構成的推論,即時学習に焦点をあてる。
論文 参考訳(メタデータ) (2024-09-05T08:47:34Z) - Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images [19.923665989164387]
我々は,Multimodal Causal Reasoningベンチマーク,すなわち MuCR を提案し,大規模言語モデルに挑戦する。
具体的には,セマンティック因果関係と視覚的手がかりを組み込んだシアム画像を作成するための,プロンプト駆動画像合成手法を提案する。
我々の広範な実験により、現在最先端のVLLMは、我々が期待したようなマルチモーダル因果推論に熟練していないことが明らかとなった。
論文 参考訳(メタデータ) (2024-08-15T12:04:32Z) - X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs [49.30255148577368]
X-FormerはCLとMIMの相補的な強度を利用するために設計された軽量トランスフォーマーモジュールである。
X-Formerは、2つの凍結した視覚エンコーダから視覚言語表現学習とマルチモーダル・マルチモーダル生成学習をブートストラップする。
さらに、凍結したLLMから視覚から言語への生成学習をブートストラップし、X-Formerの視覚的特徴をLLMで解釈できるようにする。
論文 参考訳(メタデータ) (2024-07-18T18:39:54Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
MLLM(Multimodal large language model)は、MLLM(Multimodal large language model)とLLM(LLM)の固有の能力を組み合わせて、マルチモーダルコンテキストを推論する。
ビジュアライゼーションにおける最近の多くの研究は、可視化結果を理解し、解釈し、自然言語のユーザに対して視覚化の内容を説明するMLLMの能力を実証している。
本研究では,可視化リテラシーの概念を利用してMLLMを評価することにより,そのギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-06-24T17:52:16Z) - MR-MLLM: Mutual Reinforcement of Multimodal Comprehension and Vision Perception [24.406224705072763]
Mutually Reinforced Multimodal Large Language Model (MR-MLLM) は視覚知覚とマルチモーダル理解を高める新しいフレームワークである。
まず、視覚モデルからの詳細な視覚入力と言語モデルの言語深度を調和させるために、共有クエリ融合機構を提案する。
第2に、視覚知覚出力から新たなモダリティを取り入れた、知覚強化型クロスモーダル積分法を提案する。
論文 参考訳(メタデータ) (2024-06-22T07:10:36Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - RelationVLM: Making Large Vision-Language Models Understand Visual Relations [66.70252936043688]
本稿では,複数の画像にまたがっても動画内でも,様々なレベルの関係を解釈できる大規模視覚言語モデルであるRelationVLMを提案する。
具体的には,多段階的な関係認識学習手法とそれに対応するデータ構成戦略を考案し,意味的関係を理解する能力を備えた関係VLMを提案する。
論文 参考訳(メタデータ) (2024-03-19T15:01:19Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
近年のマルチモーダル LLM の視覚能力は, いまだに系統的な欠点を呈している。
CLIP-blind pairs'(CLIP-blind pairs)を識別する。
様々なCLIPに基づく視覚・言語モデルの評価を行い、CLIPモデルに挑戦する視覚パターンとマルチモーダルLLMの問題との間に顕著な相関関係を見出した。
論文 参考訳(メタデータ) (2024-01-11T18:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。