Global Group Fairness in Federated Learning via Function Tracking
- URL: http://arxiv.org/abs/2503.15163v1
- Date: Wed, 19 Mar 2025 12:42:37 GMT
- Title: Global Group Fairness in Federated Learning via Function Tracking
- Authors: Yves Rychener, Daniel Kuhn, Yifan Hu,
- Abstract summary: We introduce a function-tracking scheme for the global fairness regularizer based on a Maximum Mean Discrepancy (MMD)<n>This scheme seamlessly integrates into most federated learning algorithms while preserving rigorous convergence guarantees.
- Score: 8.879649041822779
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We investigate group fairness regularizers in federated learning, aiming to train a globally fair model in a distributed setting. Ensuring global fairness in distributed training presents unique challenges, as fairness regularizers typically involve probability metrics between distributions across all clients and are not naturally separable by client. To address this, we introduce a function-tracking scheme for the global fairness regularizer based on a Maximum Mean Discrepancy (MMD), which incurs a small communication overhead. This scheme seamlessly integrates into most federated learning algorithms while preserving rigorous convergence guarantees, as demonstrated in the context of FedAvg. Additionally, when enforcing differential privacy, the kernel-based MMD regularization enables straightforward analysis through a change of kernel, leveraging an intuitive interpretation of kernel convolution. Numerical experiments confirm our theoretical insights.
Related papers
- FedEGG: Federated Learning with Explicit Global Guidance [90.04705121816185]
Federated Learning (FL) holds great potential for diverse applications owing to its privacy-preserving nature.
Existing methods help address these challenges via optimization-based client constraints, adaptive client selection, or the use of pre-trained models or synthetic data.
We present bftextFedEGG, a new FL algorithm that constructs a global guiding task using a well-defined, easy-to-converge learning task.
arXiv Detail & Related papers (2024-04-18T04:25:21Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREE is a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples.
We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.
arXiv Detail & Related papers (2024-02-25T17:37:53Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
Domain shift poses a significant challenge in Cross-Domain Facial Expression Recognition (CD-FER)
We propose an Adaptive Global-Local Representation Learning and Selection framework.
arXiv Detail & Related papers (2024-01-20T02:21:41Z) - Feature Norm Regularized Federated Learning: Transforming Skewed
Distributions into Global Insights [16.039822050613022]
This work introduces the Feature Norm Regularized Federated Learning (FNR-FL) algorithm.
FNR-FL incorporates class average feature norms to enhance model accuracy and convergence in non-i.i.d. scenarios.
We show that FNR-FL exhibits a substantial 66.24% improvement in accuracy and a significant 11.40% reduction in training time.
arXiv Detail & Related papers (2023-12-12T03:09:37Z) - Dynamic Fair Federated Learning Based on Reinforcement Learning [19.033986978896074]
Federated learning enables a collaborative training and optimization of global models among a group of devices without sharing local data samples.
We propose a dynamic q fairness federated learning algorithm with reinforcement learning, called DQFFL.
Our DQFFL outperforms the state-of-the-art methods in terms of overall performance, fairness and convergence speed.
arXiv Detail & Related papers (2023-11-02T03:05:40Z) - Federated Learning as Variational Inference: A Scalable Expectation
Propagation Approach [66.9033666087719]
This paper extends the inference view and describes a variational inference formulation of federated learning.
We apply FedEP on standard federated learning benchmarks and find that it outperforms strong baselines in terms of both convergence speed and accuracy.
arXiv Detail & Related papers (2023-02-08T17:58:11Z) - FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering [4.489171618387544]
Federated Learning (FL) is a machine learning paradigm that safeguards privacy by retaining client data on edge devices.
In this paper, we identify the learning challenges posed by the simultaneous occurrence of diverse distribution shifts.
We propose a novel clustering algorithm framework, dubbed as FedRC, which adheres to our proposed clustering principle.
arXiv Detail & Related papers (2023-01-29T06:50:45Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Unified Group Fairness on Federated Learning [22.143427873780404]
Federated learning (FL) has emerged as an important machine learning paradigm where a global model is trained based on private data from distributed clients.
Recent researches focus on achieving fairness among clients, but they ignore the fairness towards different groups formed by sensitive attribute(s) (e.g., gender and/or race)
We propose a novel FL algorithm, named Group Distributionally Robust Federated Averaging (G-DRFA), which mitigates the distribution shift across groups with theoretical analysis of convergence rate.
arXiv Detail & Related papers (2021-11-09T08:21:38Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.