TruthLens:A Training-Free Paradigm for DeepFake Detection
- URL: http://arxiv.org/abs/2503.15342v1
- Date: Wed, 19 Mar 2025 15:41:32 GMT
- Title: TruthLens:A Training-Free Paradigm for DeepFake Detection
- Authors: Ritabrata Chakraborty, Rajatsubhra Chakraborty, Ali Khaleghi Rahimian, Thomas MacDougall,
- Abstract summary: We introduce TruthLens, a training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task.<n>TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts.<n>By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations.
- Score: 4.64982780843177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of synthetic images generated by advanced AI models poses significant challenges in identifying and understanding manipulated visual content. Current fake image detection methods predominantly rely on binary classification models that focus on accuracy while often neglecting interpretability, leaving users without clear insights into why an image is deemed real or fake. To bridge this gap, we introduce TruthLens, a novel training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task. TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts and combines this with the reasoning capabilities of large language models (LLMs) like GPT-4 to analyze and aggregate evidence into informed decisions. By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations for its decisions. This transparency enhances trust and provides valuable insights into the artifacts that signal synthetic content. Extensive evaluations demonstrate that TruthLens outperforms conventional methods, achieving high accuracy on challenging datasets while maintaining a strong emphasis on explainability. By reframing deepfake detection as a reasoning-driven process, TruthLens establishes a new paradigm in combating synthetic media, combining cutting-edge performance with interpretability to address the growing threats of visual disinformation.
Related papers
- FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
We propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics.
FakeScope identifies AI-synthetic images with high accuracy and provides rich, interpretable, and query-driven forensic insights.
FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios.
arXiv Detail & Related papers (2025-03-31T16:12:48Z) - TruthLens: Explainable DeepFake Detection for Face Manipulated and Fully Synthetic Data [21.315907061821424]
We propose TruthLens, a novel framework for DeepFake detection.
TruthLens handles both face-manipulated DeepFakes and fully AI-generated content.
It provides detailed textual reasoning for its predictions.
arXiv Detail & Related papers (2025-03-20T05:40:42Z) - Spot the Fake: Large Multimodal Model-Based Synthetic Image Detection with Artifact Explanation [15.442558725312976]
We introduce FakeVLM, a specialized large multimodal model for both general synthetic image and DeepFake detection tasks.<n>FakeVLM excels in distinguishing real from fake images and provides clear, natural language explanations for image artifacts.<n>We present FakeClue, a comprehensive dataset containing over 100,000 images across seven categories, annotated with fine-grained artifact clues in natural language.
arXiv Detail & Related papers (2025-03-19T05:14:44Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - FakeBench: Probing Explainable Fake Image Detection via Large Multimodal Models [62.66610648697744]
We introduce a taxonomy of generative visual forgery concerning human perception, based on which we collect forgery descriptions in human natural language.
FakeBench examines LMMs with four evaluation criteria: detection, reasoning, interpretation and fine-grained forgery analysis.
This research presents a paradigm shift towards transparency for the fake image detection area.
arXiv Detail & Related papers (2024-04-20T07:28:55Z) - Common Sense Reasoning for Deepfake Detection [13.502008402754658]
State-of-the-art deepfake detection approaches rely on image-based features extracted via neural networks.
We frame deepfake detection as a Deepfake Detection VQA (DD-VQA) task and model human intuition.
We introduce a new annotated dataset and propose a Vision and Language Transformer-based framework for the DD-VQA task.
arXiv Detail & Related papers (2024-01-31T19:11:58Z) - AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors [24.78672820633581]
Deep generative models can create remarkably fake images while raising concerns about misinformation and copyright infringement.
Deepfake detection technique is developed to distinguish between real and fake images.
We propose a novel approach called AntifakePrompt, using Vision-Language Models and prompt tuning techniques.
arXiv Detail & Related papers (2023-10-26T14:23:45Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.