On three-body effects and nuclear fusion
- URL: http://arxiv.org/abs/2503.15387v1
- Date: Wed, 19 Mar 2025 16:26:26 GMT
- Title: On three-body effects and nuclear fusion
- Authors: R. Vilela Mendes,
- Abstract summary: Quantum control of excited quantum states in confined systems might be useful to induce nuclear fusion.<n>The difficult nature of the quantum control of these it % quantum collision states is discussed here, as well as a possible solution using a two-step nonunitary evolution process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Confined to small regions, quantum systems exhibit electronic and structural properties different from their free space behavior. In Coulomb 3-body problems, configurations of close proximity of identically charged particles are classically unstable. They however exist as excited quantum states in confined systems. Quantum control of such states might be useful to induce nuclear fusion. The difficult nature of the quantum control of these {\it % quantum collision states} is discussed here, as well as a possible solution using a two-step nonunitary evolution process.
Related papers
- Quantum-stabilized states in magnetic dipolar quantum gases [0.0]
A decade ago, a universal stabilization mechanism driven by quantum fluctuations was discovered in ultracold Bose gases of highly magnetic atoms.
This mechanism prevents these systems from collapsing and instead allows exotic states of matter to arise, including ultradilute quantum droplets, crystallized quantum states, and specifically supersolids.
arXiv Detail & Related papers (2025-04-08T17:10:11Z) - Quantum Gas Microscopy of Fermions in the Continuum [0.0]
Microscopically probing quantum many-body systems by resolving constituent particles is essential for understanding quantum matter.
Atom-based quantum simulators offer a unique platform that enables the imaging of each particle in a many-body system.
Here, we introduce a novel method for imaging atomic quantum many-body systems in the continuum, allowing for in situ resolution of every particle.
arXiv Detail & Related papers (2024-11-13T17:00:02Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Observation of Bose-Einstein Condensation of Dipolar Molecules [2.820929542705023]
We report on the realization of a Bose-Einstein condensate (BEC) of dipolar molecules.
BECs with a condensate fraction of 60 % and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 seconds.
This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far.
arXiv Detail & Related papers (2023-12-18T06:40:54Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum control of "quantum triple collisions" in a maximally symmetric
three-body Coulomb problem [0.0]
In Coulomb 3-body problems, configurations of close proximity of the particles are classically unstable.
In confined systems they might however exist as excited quantum states.
arXiv Detail & Related papers (2022-02-13T16:55:06Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
Noncommuting charges have emerged as a subfield at the intersection of quantum thermodynamics and quantum information.
We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations.
We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Preparation of a superposition of squeezed coherent states of a cavity
field via coupling to a superconducting charge qubit [0.0]
We will discuss the issue of the generation of nonclassical states in the context of a superconducting qubit in a microcavity.
The key ingredients to engineer these quantum states are a tunable gate voltage and a classical magnetic field applied to SQUID.
arXiv Detail & Related papers (2020-03-20T18:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.