Automated Processing of eXplainable Artificial Intelligence Outputs in Deep Learning Models for Fault Diagnostics of Large Infrastructures
- URL: http://arxiv.org/abs/2503.15415v1
- Date: Wed, 19 Mar 2025 16:57:00 GMT
- Title: Automated Processing of eXplainable Artificial Intelligence Outputs in Deep Learning Models for Fault Diagnostics of Large Infrastructures
- Authors: Giovanni Floreale, Piero Baraldi, Enrico Zio, Olga Fink,
- Abstract summary: This work proposes a novel framework that combines post-hoc explanations with semi-supervised learning to automatically identify anomalous explanations.<n>The proposed framework is applied to drone-collected images of insulator shells for power grid infrastructure monitoring.<n>The average classification accuracy on two faulty classes is improved by 8% and maintenance operators are required to manually reclassify only 15% of the images.
- Score: 13.422002958854936
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep Learning (DL) models processing images to recognize the health state of large infrastructure components can exhibit biases and rely on non-causal shortcuts. eXplainable Artificial Intelligence (XAI) can address these issues but manually analyzing explanations generated by XAI techniques is time-consuming and prone to errors. This work proposes a novel framework that combines post-hoc explanations with semi-supervised learning to automatically identify anomalous explanations that deviate from those of correctly classified images and may therefore indicate model abnormal behaviors. This significantly reduces the workload for maintenance decision-makers, who only need to manually reclassify images flagged as having anomalous explanations. The proposed framework is applied to drone-collected images of insulator shells for power grid infrastructure monitoring, considering two different Convolutional Neural Networks (CNNs), GradCAM explanations and Deep Semi-Supervised Anomaly Detection. The average classification accuracy on two faulty classes is improved by 8% and maintenance operators are required to manually reclassify only 15% of the images. We compare the proposed framework with a state-of-the-art approach based on the faithfulness metric: the experimental results obtained demonstrate that the proposed framework consistently achieves F_1 scores larger than those of the faithfulness-based approach. Additionally, the proposed framework successfully identifies correct classifications that result from non-causal shortcuts, such as the presence of ID tags printed on insulator shells.
Related papers
- FakeReasoning: Towards Generalizable Forgery Detection and Reasoning [24.8865218866598]
We propose modeling AI-generated image detection and explanation as a Forgery Detection and Reasoning task (FDR-Task)
We introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 100K images across 10 generative models.
We also propose FakeReasoning, a forgery detection and reasoning framework with two key components.
arXiv Detail & Related papers (2025-03-27T06:54:06Z) - Underwater SONAR Image Classification and Analysis using LIME-based Explainable Artificial Intelligence [0.0]
This paper explores the application of the eXplainable Artificial Intelligence (XAI) tool to interpret the underwater image classification results.
An extensive analysis of transfer learning techniques for image classification using benchmark Convolutional Neural Network (CNN) architectures is carried out.
XAI techniques highlight interpretability of the results in a more human-compliant way, thus boosting our confidence and reliability.
arXiv Detail & Related papers (2024-08-23T04:54:18Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual Explanations [35.458709912618176]
Deep learning has led to huge progress in complex image classification tasks like ImageNet, unexpected failure modes, e.g. via spurious features.
For safety-critical tasks the black-box nature of their decisions is problematic, and explanations or at least methods which make decisions plausible are needed urgently.
We address these problems by generating images that optimize a classifier-derived objective using a framework for guided image generation.
arXiv Detail & Related papers (2023-11-29T17:35:29Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
We propose a network to perform full reference (FR) and no reference (NR) IQA.
We first employ an encoder to extract multi-level features from input images.
A Hierarchical Attention (HA) module is proposed as a universal adapter for both FR and NR inputs.
A Semantic Distortion Aware (SDA) module is proposed to examine feature correlations between shallow and deep layers of the encoder.
arXiv Detail & Related papers (2023-10-14T11:03:04Z) - Recursive Counterfactual Deconfounding for Object Recognition [20.128093193861165]
We propose a Recursive Counterfactual Deconfounding model for object recognition in both closed-set and open-set scenarios.
We show that the proposed RCD model performs better than 11 state-of-the-art baselines significantly in most cases.
arXiv Detail & Related papers (2023-09-25T07:46:41Z) - Evaluation and Comparison of Deep Learning Methods for Pavement Crack
Identification with Visual Images [0.0]
pavement crack identification with visual images via deep learning algorithms has the advantages of not being limited by the material of object to be detected.
In the aspect of patch sample classification, the fine-tuned TL models can be equivalent to or even slightly better than the ED models in accuracy.
In the aspect of accurate crack location, both ED and GAN algorithms can achieve pixel-level segmentation and is expected to be detected in real time on low computing power platform.
arXiv Detail & Related papers (2021-12-20T08:23:43Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.