LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding
- URL: http://arxiv.org/abs/2503.15420v1
- Date: Wed, 19 Mar 2025 17:00:58 GMT
- Title: LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding
- Authors: Amirhossein Kazerouni, Soroush Mehraban, Michael Brudno, Babak Taati,
- Abstract summary: Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains.<n>We introduce LIFT, a novel, high-performance framework that captures multiscale information through meta-learning.<n>We also introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings.
- Score: 4.759109475818876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains, offering key advantages such as memory efficiency and resolution independence. Conventional deep learning models are typically modality-dependent, often requiring custom architectures and objectives for different types of signals. However, existing INR frameworks frequently rely on global latent vectors or exhibit computational inefficiencies that limit their broader applicability. We introduce LIFT, a novel, high-performance framework that addresses these challenges by capturing multiscale information through meta-learning. LIFT leverages multiple parallel localized implicit functions alongside a hierarchical latent generator to produce unified latent representations that span local, intermediate, and global features. This architecture facilitates smooth transitions across local regions, enhancing expressivity while maintaining inference efficiency. Additionally, we introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings. With this straightforward approach, ReLIFT effectively addresses the convergence-capacity gap found in comparable methods, providing an efficient yet powerful solution to improve capacity and speed up convergence. Empirical results show that LIFT achieves state-of-the-art (SOTA) performance in generative modeling and classification tasks, with notable reductions in computational costs. Moreover, in single-task settings, the streamlined ReLIFT architecture proves effective in signal representations and inverse problem tasks.
Related papers
- Transformer-Empowered Actor-Critic Reinforcement Learning for Sequence-Aware Service Function Chain Partitioning [1.9120720496423733]
We introduce a Transformer-empowered actor-critic framework specifically designed for sequence-aware SFC partitioning.
Our approach effectively models complex inter-dependencies among VNFs, facilitating coordinated and parallelized decision-making processes.
arXiv Detail & Related papers (2025-04-26T12:18:57Z) - InvFussion: Bridging Supervised and Zero-shot Diffusion for Inverse Problems [76.39776789410088]
This work introduces a framework that combines the strong performance of supervised approaches and the flexibility of zero-shot methods.
A novel architectural design seamlessly integrates the degradation operator directly into the denoiser.
Experimental results on the FFHQ and ImageNet datasets demonstrate state-of-the-art posterior-sampling performance.
arXiv Detail & Related papers (2025-04-02T12:40:57Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.<n>Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.<n>We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey [16.89460694470542]
Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge representation.<n>INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit functions.<n>This survey introduces a clear taxonomy that categorises them into four key areas: activation functions, position encoding, combined strategies, and network structure.
arXiv Detail & Related papers (2024-11-06T06:14:24Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Efficient Heterogeneous Large Language Model Decoding with Model-Attention Disaggregation [15.35494431928751]
Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but also introduce significant challenges in real-world serving.
We introduce model-attention disaggregation to enhance the efficiency of LLM decoding.
We develop and deploy Lamina, an LLM inference system that incorporates model-attention disaggregation in a distributed heterogeneous cluster.
arXiv Detail & Related papers (2024-05-03T02:15:15Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.