Transformer-Empowered Actor-Critic Reinforcement Learning for Sequence-Aware Service Function Chain Partitioning
- URL: http://arxiv.org/abs/2504.18902v1
- Date: Sat, 26 Apr 2025 12:18:57 GMT
- Title: Transformer-Empowered Actor-Critic Reinforcement Learning for Sequence-Aware Service Function Chain Partitioning
- Authors: Cyril Shih-Huan Hsu, Anestis Dalgkitsis, Chrysa Papagianni, Paola Grosso,
- Abstract summary: We introduce a Transformer-empowered actor-critic framework specifically designed for sequence-aware SFC partitioning.<n>Our approach effectively models complex inter-dependencies among VNFs, facilitating coordinated and parallelized decision-making processes.
- Score: 1.9120720496423733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the forthcoming era of 6G networks, characterized by unprecedented data rates, ultra-low latency, and extensive connectivity, effective management of Virtualized Network Functions (VNFs) is essential. VNFs are software-based counterparts of traditional hardware devices that facilitate flexible and scalable service provisioning. Service Function Chains (SFCs), structured as ordered sequences of VNFs, are pivotal in orchestrating complex network services. Nevertheless, partitioning SFCs across multi-domain network infrastructures presents substantial challenges due to stringent latency constraints and limited resource availability. Conventional optimization-based methods typically exhibit low scalability, whereas existing data-driven approaches often fail to adequately balance computational efficiency with the capability to effectively account for dependencies inherent in SFCs. To overcome these limitations, we introduce a Transformer-empowered actor-critic framework specifically designed for sequence-aware SFC partitioning. By utilizing the self-attention mechanism, our approach effectively models complex inter-dependencies among VNFs, facilitating coordinated and parallelized decision-making processes. Additionally, we enhance training stability and convergence using $\epsilon$-LoPe exploration strategy as well as Asymptotic Return Normalization. Comprehensive simulation results demonstrate that the proposed methodology outperforms existing state-of-the-art solutions in terms of long-term acceptance rates, resource utilization efficiency, and scalability, while achieving rapid inference. This study not only advances intelligent network orchestration by delivering a scalable and robust solution for SFC partitioning within emerging 6G environments, but also bridging recent advancements in Large Language Models (LLMs) with the optimization of next-generation networks.
Related papers
- LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding [4.759109475818876]
Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains.<n>We introduce LIFT, a novel, high-performance framework that captures multiscale information through meta-learning.<n>We also introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings.
arXiv Detail & Related papers (2025-03-19T17:00:58Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.<n>Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.<n>We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Differentiable Discrete Event Simulation for Queuing Network Control [7.965453961211742]
Queueing network control poses distinct challenges, including highity, large state and action spaces, and lack of stability.
We propose a scalable framework for policy optimization based on differentiable discrete event simulation.
Our methods can flexibly handle realistic scenarios, including systems operating in non-stationary environments.
arXiv Detail & Related papers (2024-09-05T17:53:54Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning.
This paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees.
We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
arXiv Detail & Related papers (2024-07-25T20:02:57Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Advanced Scaling Methods for VNF deployment with Reinforcement Learning [0.0]
Network function virtualization (NFV) and software-defined network (SDN) have become emerging network paradigms.
reinforcement learning (RL) based approaches have been proposed to optimize VNF deployment.
In this paper, we propose an enhanced model which can be adapted to more general network settings.
arXiv Detail & Related papers (2023-01-19T21:31:23Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Machine Learning for Performance-Aware Virtual Network Function
Placement [3.5558885788605323]
We develop a machine learning decision tree model that learns from the effective placement of the various Virtual Network Function instances forming a Service Function Chain (SFC)
The model takes several performance-related features from the network as an input and selects the placement of the various VNF instances on network servers with the objective of minimizing the delay between dependent VNF instances.
arXiv Detail & Related papers (2020-01-13T14:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.