Sculpting Features from Noise: Reward-Guided Hierarchical Diffusion for Task-Optimal Feature Transformation
- URL: http://arxiv.org/abs/2505.15152v1
- Date: Wed, 21 May 2025 06:18:42 GMT
- Title: Sculpting Features from Noise: Reward-Guided Hierarchical Diffusion for Task-Optimal Feature Transformation
- Authors: Nanxu Gong, Zijun Li, Sixun Dong, Haoyue Bai, Wangyang Ying, Xinyuan Wang, Yanjie Fu,
- Abstract summary: DIFFT redefines Feature Transformation as a reward-guided generative task.<n>It produces structured, discrete features, preserving intra-feature dependencies while allowing parallel inter-feature generation.<n>It consistently outperforms state-of-the-art baselines in predictive accuracy and robustness, with significantly lower training and inference times.
- Score: 18.670626228472877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature Transformation (FT) crafts new features from original ones via mathematical operations to enhance dataset expressiveness for downstream models. However, existing FT methods exhibit critical limitations: discrete search struggles with enormous combinatorial spaces, impeding practical use; and continuous search, being highly sensitive to initialization and step sizes, often becomes trapped in local optima, restricting global exploration. To overcome these limitations, DIFFT redefines FT as a reward-guided generative task. It first learns a compact and expressive latent space for feature sets using a Variational Auto-Encoder (VAE). A Latent Diffusion Model (LDM) then navigates this space to generate high-quality feature embeddings, its trajectory guided by a performance evaluator towards task-specific optima. This synthesis of global distribution learning (from LDM) and targeted optimization (reward guidance) produces potent embeddings, which a novel semi-autoregressive decoder efficiently converts into structured, discrete features, preserving intra-feature dependencies while allowing parallel inter-feature generation. Extensive experiments on 14 benchmark datasets show DIFFT consistently outperforms state-of-the-art baselines in predictive accuracy and robustness, with significantly lower training and inference times.
Related papers
- Two-Stage Feature Generation with Transformer and Reinforcement Learning [7.151819692081128]
Two-Stage Feature Generation (TSFG) framework integrates a Transformer-based encoder-decoder architecture with Proximal Policy Optimization.<n>We show that TSFG outperforms existing state-of-the-art methods in terms of feature quality and adaptability.
arXiv Detail & Related papers (2025-05-28T05:11:59Z) - LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding [4.759109475818876]
Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains.<n>We introduce LIFT, a novel, high-performance framework that captures multiscale information through meta-learning.<n>We also introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings.
arXiv Detail & Related papers (2025-03-19T17:00:58Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
Single Domain Generalization aims to train models with consistent performance across diverse scenarios using data from a single source.<n>We propose Discriminative Domain Reassembly and Soft-Fusion (DRSF), a training framework leveraging synthetic data to improve model generalization.
arXiv Detail & Related papers (2025-03-17T18:08:03Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Enhancing Zeroth-order Fine-tuning for Language Models with Low-rank Structures [21.18741772731095]
Zeroth-order (ZO) algorithms offer a promising alternative by approximating gradients using finite differences of function values.
Existing ZO methods struggle to capture the low-rank gradient structure common in LLM fine-tuning, leading to suboptimal performance.
This paper proposes a low-rank ZO algorithm (LOZO) that effectively captures this structure in LLMs.
arXiv Detail & Related papers (2024-10-10T08:10:53Z) - Hierarchical Features Matter: A Deep Exploration of Progressive Parameterization Method for Dataset Distillation [44.03611131165989]
We propose a novel generative parameterization method dubbed Hierarchical generative Distillation (H-PD)<n>The proposed H-PD achieves a significant performance improvement under various settings with equivalent time consumption.<n>It even surpasses current generative distillation using diffusion models under extreme compression ratios IPC=1 and IPC=10.
arXiv Detail & Related papers (2024-06-09T09:15:54Z) - Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from low resolution, simple background, and small size of the detection data.
These factors also limit the performance of the well-known low-rank representation (LRR) models in terms of robustness.
We build a new set of HAD benchmark datasets for improving the robustness of the HAD algorithm in complex scenarios, AIR-HAD for short.
arXiv Detail & Related papers (2024-02-23T14:15:58Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Fourier Test-time Adaptation with Multi-level Consistency for Robust
Classification [10.291631977766672]
We propose a novel approach called Fourier Test-time Adaptation (FTTA) to integrate input and model tuning.
FTTA builds a reliable multi-level consistency measurement of paired inputs for achieving self-supervised of prediction.
It was extensively validated on three large classification datasets with different modalities and organs.
arXiv Detail & Related papers (2023-06-05T02:29:38Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Rich Feature Construction for the Optimization-Generalization Dilemma [18.721567020497968]
We construct a rich representation (RFC) containing a palette of potentially useful features, ready to be used by models.
RFC consistently helps six OoD methods achieve top performance on challenging invariant training benchmarks.
On the realistic Camelyon17 task, our method helps both OoD and methods outperform earlier compatable results by at least $5%$.
arXiv Detail & Related papers (2022-03-24T20:39:33Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
We introduce a new sparsity dimension, namely pattern-based sparsity that comprises pattern and connectivity sparsity, and becoming both highly accurate and hardware friendly.
Our approach on the new pattern-based sparsity naturally fits into compiler optimization for highly efficient DNN execution on mobile platforms.
arXiv Detail & Related papers (2020-01-20T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.