論文の概要: Accurate, transferable, and verifiable machine-learned interatomic potentials for layered materials
- arxiv url: http://arxiv.org/abs/2503.15432v1
- Date: Wed, 19 Mar 2025 17:14:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:21:53.649343
- Title: Accurate, transferable, and verifiable machine-learned interatomic potentials for layered materials
- Title(参考訳): 層状材料に対する精密、転写可能、検証可能な機械学習型原子間ポテンシャル
- Authors: Johnathan D. Georgaras, Akash Ramdas, Chung Hsuan Shan, Elena Halsted, Berwyn, Tianshu Li, Felipe H. da Jornada,
- Abstract要約: ツイストされた層状バンダーワールス材料は、しばしば、非ツイストの材料に欠如しているユニークな電子的および光学的特性を示す。
本稿では、層内相互作用と層間相互作用を分離する、マシン学習型原子間ポテンシャルとデータセットキュレーション手法を提案する。
本手法は,様々な層内相互作用モデルや層間相互作用モデルとシームレスに統合し,モワール材料の計算的緩和を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Twisted layered van-der-Waals materials often exhibit unique electronic and optical properties absent in their non-twisted counterparts. Unfortunately, predicting such properties is hindered by the difficulty in determining the atomic structure in materials displaying large moir\'e domains. Here, we introduce a split machine-learned interatomic potential and dataset curation approach that separates intralayer and interlayer interactions and significantly improves model accuracy -- with a tenfold increase in energy and force prediction accuracy relative to conventional models. We further demonstrate that traditional MLIP validation metrics -- force and energy errors -- are inadequate for moir\'e structures and develop a more holistic, physically-motivated metric based on the distribution of stacking configurations. This metric effectively compares the entirety of large-scale moir\'e domains between two structures instead of relying on conventional measures evaluated on smaller commensurate cells. Finally, we establish that one-dimensional instead of two-dimensional moir\'e structures can serve as efficient surrogate systems for validating MLIPs, allowing for a practical model validation protocol against explicit DFT calculations. Applying our framework to HfS2/GaS bilayers reveals that accurate structural predictions directly translate into reliable electronic properties. Our model-agnostic approach integrates seamlessly with various intralayer and interlayer interaction models, enabling computationally tractable relaxation of moir\'e materials, from bilayer to complex multilayers, with rigorously validated accuracy.
- Abstract(参考訳): ツイストされた層状バンダーワールス材料は、しばしば、非ツイストの材料に欠如しているユニークな電子的および光学的特性を示す。
残念ながら、そのような性質の予測は、大きなモワール領域を示す物質の原子構造を決定するのが困難であるために妨げられる。
本稿では,階層内相互作用と層間相互作用を分離し,従来のモデルと比較してエネルギーと力の予測精度が10倍に向上し,モデル精度を大幅に向上させる,マシン学習型原子間ポテンシャル・データセットキュレーション手法を提案する。
この計量は、より小さなコンメンシュレート細胞で評価される従来の測定基準に頼るのではなく、2つの構造の間の大規模モワールドメインの全体像を効果的に比較する。
最後に,2次元モワール構造の代わりに1次元でMLIPを検証するための効率的なサロゲートシステムとして機能し,明示的なDFT計算に対する実用的なモデル検証プロトコルを実現する。
我々のフレームワークをHfS2/GaS複層に応用すると、正確な構造予測が直接信頼できる電子特性に変換されることが明らかになる。
モデルに依存しないアプローチは、様々な層内相互作用モデルや層間相互作用モデルとシームレスに統合し、二層膜から複素多層膜への計算的緩和を可能にする。
関連論文リスト
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
金標準CCSD(T)計算をトレーニングデータとして,有機分子の電子構造を統一した機械学習手法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に用いられているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
論文 参考訳(メタデータ) (2024-05-09T19:51:27Z) - Adapting OC20-trained EquiformerV2 Models for High-Entropy Materials [0.5812062802134551]
オープン触媒プロジェクトから事前学習したEquiformerV2モデルの調整および微調整を行った結果について述べる。
結合部位の局所環境に基づいてエネルギーフィルタを適用することにより、ゼロショット推論が著しく改善される。
また、一般的な機械学習の可能性を想定したEquiformerV2は、より小さく、より焦点を絞った直接推論モデルに通知することができる。
論文 参考訳(メタデータ) (2024-03-14T18:59:54Z) - Electronic excited states from physically-constrained machine learning [0.0]
本稿では,実効ハミルトニアンの対称性適応MLモデルをトレーニングし,量子力学計算から電子励起を再現する統合モデリング手法を提案する。
結果として得られるモデルは、トレーニングされた分子よりもずっと大きく、より複雑な分子を予測できる。
論文 参考訳(メタデータ) (2023-11-01T20:49:59Z) - The Role of Reference Points in Machine-Learned Atomistic Simulation
Models [0.0]
化学環境モデリング理論(CEMT)は、従来の原子中心機械学習力場(MLFF)モデルに固有の制約を克服するために設計されている。
FE-DFT計算による空間分解エネルギー密度と電荷密度の活用を可能にする。
論文 参考訳(メタデータ) (2023-10-28T01:02:14Z) - Electronic Structure Prediction of Multi-million Atom Systems Through Uncertainty Quantification Enabled Transfer Learning [5.4875371069660925]
基底状態電子密度 -- コーン・シャム密度汎関数理論(KS-DFT)シミュレーションで得られる -- は、豊富な物質情報を含んでいる。
しかし、KS-DFTの計算コストは、トレーニングデータ生成を妨害する傾向にあるシステムサイズと3倍にスケールする。
ここでは,この基本的課題に,移動学習を用いて学習データのマルチスケールな性質を活用する。
論文 参考訳(メタデータ) (2023-08-24T21:41:29Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
グラフニューラルネットワーク(GNN)は、材料科学者からますます注目を集めている。
本研究では,DimeNet++と混合密度ネットワークに基づくマルチタスク(MT)アーキテクチャを構築し,その性能向上を図る。
論文 参考訳(メタデータ) (2022-09-15T13:52:15Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
量子多体物理学から行列積演算子(MPO)に基づく新しいMoEアーキテクチャを提案する。
分解されたMPO構造により、元のMoEアーキテクチャのパラメータを減らすことができる。
GPT2に基づく3つの有名な下流自然言語データセットの実験は、モデルキャパシティの向上における性能と効率の向上を示している。
論文 参考訳(メタデータ) (2022-03-02T13:44:49Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。