論文の概要: Electronic excited states from physically-constrained machine learning
- arxiv url: http://arxiv.org/abs/2311.00844v2
- Date: Wed, 8 Nov 2023 01:04:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-09 18:34:57.277951
- Title: Electronic excited states from physically-constrained machine learning
- Title(参考訳): 物理的拘束された機械学習からの電子励起状態
- Authors: Edoardo Cignoni, Divya Suman, Jigyasa Nigam, Lorenzo Cupellini,
Benedetta Mennucci, Michele Ceriotti
- Abstract要約: 本稿では,実効ハミルトニアンの対称性適応MLモデルをトレーニングし,量子力学計算から電子励起を再現する統合モデリング手法を提案する。
結果として得られるモデルは、トレーニングされた分子よりもずっと大きく、より複雑な分子を予測できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven techniques are increasingly used to replace electronic-structure
calculations of matter. In this context, a relevant question is whether machine
learning (ML) should be applied directly to predict the desired properties or
be combined explicitly with physically-grounded operations. We present an
example of an integrated modeling approach, in which a symmetry-adapted ML
model of an effective Hamiltonian is trained to reproduce electronic
excitations from a quantum-mechanical calculation. The resulting model can make
predictions for molecules that are much larger and more complex than those that
it is trained on, and allows for dramatic computational savings by indirectly
targeting the outputs of well-converged calculations while using a
parameterization corresponding to a minimal atom-centered basis. These results
emphasize the merits of intertwining data-driven techniques with physical
approximations, improving the transferability and interpretability of ML models
without affecting their accuracy and computational efficiency, and providing a
blueprint for developing ML-augmented electronic-structure methods.
- Abstract(参考訳): データ駆動技術は、物質の電子構造計算を置き換えるためにますます使われている。
この文脈では、機械学習(ML)が望ましい特性を予測するために直接適用されるべきなのか、それとも物理的に接地された操作と明示的に組み合わせるべきなのかが問題となる。
本稿では,有効ハミルトニアンの対称性に適合したmlモデルを用いて,量子力学的計算から電子励起を再現する統合モデリング手法の例を示す。
得られたモデルは、トレーニングされた分子よりもはるかに大きく複雑な分子を予測でき、最小原子中心基底に対応するパラメータ化を用いて、よく収束した計算の出力を間接的にターゲットすることで、劇的な計算の節約を可能にする。
これらの結果は、物理近似を用いたデータ駆動手法の相互運用のメリットを強調し、精度と計算効率に影響を与えることなくMLモデルの伝達性と解釈性を改善し、ML強化電子構造法を開発するための青写真を提供する。
関連論文リスト
- Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [1.1016723046079784]
原子性物質シミュレーションにおける連続的および微分可能なアルケミカル自由度の利用について報告する。
提案手法は,MLIPのメッセージパッシングおよび読み出し機構の変更とともに,対応する重みを持つアルケミカル原子を入力グラフに導入する。
MLIPのエンドツーエンドの微分可能性により、構成重みに対するエネルギー勾配の効率的な計算が可能となる。
論文 参考訳(メタデータ) (2024-04-16T17:24:22Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Machine learning for accuracy in density functional approximations [0.0]
密度汎関数近似の精度を向上させるために機械学習を適用した最近の進歩を概観する。
異なる化学物質と材料クラス間で伝達可能な機械学習モデルを考案する際の約束と課題について論じる。
論文 参考訳(メタデータ) (2023-11-01T00:02:09Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - SE(3)-equivariant prediction of molecular wavefunctions and electronic
densities [4.2572103161049055]
本稿では,幾何点クラウドデータのためのディープラーニングアーキテクチャを構築するための汎用SE(3)-同変演算とビルディングブロックを紹介する。
本モデルでは,従来の最先端モデルと比較して,予測誤差を最大2桁まで低減する。
低精度参照波動関数で訓練されたモデルが電子的多体相互作用の正当性を暗黙的に学習するトランスファーラーニングアプリケーションにおいて、我々のアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2021-06-04T08:57:46Z) - Model-data-driven constitutive responses: application to a multiscale
computational framework [0.0]
古典法則(モデルベース)、データ駆動補正コンポーネント、計算的マルチスケールアプローチを組み合わせたハイブリッド方法論が提示される。
非線形数値均質化法により得られた低スケールのデータを用いてモデルベース材料表現を局所的に改善する。
提案手法では,モデルとデータの両方が基本的な役割を担い,物理に基づく応答と機械学習のブラックボックスの相乗的統合を実現する。
論文 参考訳(メタデータ) (2021-04-06T16:34:46Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
我々はOrbNetモデルを洗練し、分子のエネルギー、力、その他の応答特性を正確に予測する。
このモデルは、すべての電子構造項に対する解析的勾配の導出により、エンドツーエンドで微分可能である。
ドメイン固有の特徴を用いることにより、化学空間をまたいで移動可能であることが示されている。
論文 参考訳(メタデータ) (2020-11-05T06:48:46Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNetは、学習効率と転送可能性の観点から、既存のメソッドよりも優れています。
薬物のような分子のデータセットに応用するために、textscOrbNetは1000倍以上の計算コストでDFTの化学的精度でエネルギーを予測する。
論文 参考訳(メタデータ) (2020-07-15T22:38:41Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。