Variational Quantum Annealing for Quantum Chemistry
- URL: http://arxiv.org/abs/2503.15473v1
- Date: Wed, 19 Mar 2025 17:48:52 GMT
- Title: Variational Quantum Annealing for Quantum Chemistry
- Authors: Ka-Wa Yip, Kübra Yeter-Aydeniz, Sijia S. Dong,
- Abstract summary: VarQA is an algorithm for electronic structure theory using a quantum annealer as a sampler.<n>We introduce a strategy called the "digitizer" for searching the space of variational parameters efficiently.<n>We demonstrate the effectiveness of VarQA by evaluating the ground-state potential energy surface for molecules with up to $20$ spin orbitals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a variational quantum annealing (VarQA) algorithm for electronic structure theory, in which we use the quantum annealer as a sampler and prepare an ansatz state through its statistics. We also introduce a strategy called the "digitizer" for searching the space of variational parameters efficiently. We demonstrate the effectiveness of VarQA by evaluating the ground-state potential energy surface for molecules with up to $20$ spin orbitals as well as an excited-state potential energy surface. This approach resembles the workings of the quantum Boltzmann Machines (QBMs), but is generalized to handle distributions beyond the Boltzmann distribution. In VarQA, with the number of required logical qubits equal to the number of spin orbitals, a fully connected Ising Hamiltonian can be readily implemented in a large-scale quantum annealer as a scalable ansatz for electronic structure calculations.
Related papers
- Enhancing the accuracy and efficiency of sample-based quantum diagonalization with phaseless auxiliary-field quantum Monte Carlo [0.0]
We show that a non-perturbative approach, phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) can recover a substantial amount of correlation energy.<n> Extrapolation of the ph-AFQMC energy versus the energy variance of the SQD trial wavefunctions has the potential to further improve the energy accuracy.
arXiv Detail & Related papers (2025-03-07T22:38:22Z) - Many-body thermal states on a quantum computer: a variational approach [0.0]
We present a hybrid quantum--classical variational quantum algorithm for the preparation of the Gibbs state of the quantum $XY$ model.
We show how the symmetries of a many-body system can be exploited to significantly reduce the exponentially increasing number of variational parameters needed in the Grover and Rudolph algorithm.
arXiv Detail & Related papers (2024-06-11T19:54:59Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Simulating electronic structure on bosonic quantum computers [34.84696943963362]
We propose an approach to map the electronic Hamiltonian into a qumode bosonic problem that can be solved on bosonic quantum devices.<n>This work establishes a new pathway for simulating many-fermion systems, highlighting the potential of hybrid qubit-qumode quantum devices.
arXiv Detail & Related papers (2024-04-16T02:04:11Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.