Cube: A Roblox View of 3D Intelligence
- URL: http://arxiv.org/abs/2503.15475v2
- Date: Mon, 14 Apr 2025 19:52:06 GMT
- Title: Cube: A Roblox View of 3D Intelligence
- Authors: Foundation AI Team, Kiran Bhat, Nishchaie Khanna, Karun Channa, Tinghui Zhou, Yiheng Zhu, Xiaoxia Sun, Charles Shang, Anirudh Sudarshan, Maurice Chu, Daiqing Li, Kangle Deng, Jean-Philippe Fauconnier, Tijmen Verhulsdonck, Maneesh Agrawala, Kayvon Fatahalian, Alexander Weiss, Christian Reiser, Ravi Kiran Chirravuri, Ravali Kandur, Alejandro Pelaez, Akash Garg, Michael Palleschi, Jessica Wang, Skylar Litz, Leon Liu, Anying Li, David Harmon, Derek Liu, Liangjun Feng, Denis Goupil, Lukas Kuczynski, Jihyun Yoon, Naveen Marri, Peiye Zhuang, Yinan Zhang, Brian Yin, Haomiao Jiang, Marcel van Workum, Thomas Lane, Bryce Erickson, Salil Pathare, Kyle Price, Steve Han, Yiqing Wang, Anupam Singh, David Baszucki,
- Abstract summary: Foundation models trained on vast amounts of data have demonstrated remarkable reasoning and generation capabilities.<n>We show how our tokenization scheme can be used in applications for text-to-shape generation, shape-to-text generation and text-to-scene generation.<n>We conclude with a discussion outlining our path to building a fully unified foundation model for 3D intelligence.
- Score: 67.43543266278154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models trained on vast amounts of data have demonstrated remarkable reasoning and generation capabilities in the domains of text, images, audio and video. Our goal at Roblox is to build such a foundation model for 3D intelligence, a model that can support developers in producing all aspects of a Roblox experience, from generating 3D objects and scenes to rigging characters for animation to producing programmatic scripts describing object behaviors. We discuss three key design requirements for such a 3D foundation model and then present our first step towards building such a model. We expect that 3D geometric shapes will be a core data type and describe our solution for 3D shape tokenizer. We show how our tokenization scheme can be used in applications for text-to-shape generation, shape-to-text generation and text-to-scene generation. We demonstrate how these applications can collaborate with existing large language models (LLMs) to perform scene analysis and reasoning. We conclude with a discussion outlining our path to building a fully unified foundation model for 3D intelligence.
Related papers
- Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - Probing the 3D Awareness of Visual Foundation Models [56.68380136809413]
We analyze the 3D awareness of visual foundation models.
We conduct experiments using task-specific probes and zero-shot inference procedures on frozen features.
arXiv Detail & Related papers (2024-04-12T17:58:04Z) - 3D-TOGO: Towards Text-Guided Cross-Category 3D Object Generation [107.46972849241168]
3D-TOGO model generates 3D objects in the form of the neural radiance field with good texture.
Experiments on the largest 3D object dataset (i.e., ABO) are conducted to verify that 3D-TOGO can better generate high-quality 3D objects.
arXiv Detail & Related papers (2022-12-02T11:31:49Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z) - Building 3D Generative Models from Minimal Data [3.472931603805115]
We show that our approach can be used to perform face recognition using only a single 3D template (one scan total, not one per person)
We extend our model to a preliminary unsupervised learning framework that enables the learning of the distribution of 3D faces using one 3D template and a small number of 2D images.
arXiv Detail & Related papers (2022-03-04T20:10:50Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z) - Building 3D Morphable Models from a Single Scan [3.472931603805115]
We propose a method for constructing generative models of 3D objects from a single 3D mesh.
Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes.
We show that our approach can be used to perform face recognition using only a single 3D scan.
arXiv Detail & Related papers (2020-11-24T23:08:14Z) - Interactive Annotation of 3D Object Geometry using 2D Scribbles [84.51514043814066]
In this paper, we propose an interactive framework for annotating 3D object geometry from point cloud data and RGB imagery.
Our framework targets naive users without artistic or graphics expertise.
arXiv Detail & Related papers (2020-08-24T21:51:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.