論文の概要: MAPoRL: Multi-Agent Post-Co-Training for Collaborative Large Language Models with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2502.18439v1
- Date: Tue, 25 Feb 2025 18:33:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 18:40:38.637064
- Title: MAPoRL: Multi-Agent Post-Co-Training for Collaborative Large Language Models with Reinforcement Learning
- Title(参考訳): MAPoRL:強化学習を伴う協調的大規模言語モデルのためのマルチエージェントポストコレーニング
- Authors: Chanwoo Park, Seungju Han, Xingzhi Guo, Asuman Ozdaglar, Kaiqing Zhang, Joo-Kyung Kim,
- Abstract要約: 新しいポストトレーニングパラダイムMAPoRL(強化学習を用いた協調LLMのためのマルチエージェントポストトレーニング)を導入する。
MAPoRLでは、複数のLLMが独立して独自の応答を生成し、最終回答を協調的に改善するためのマルチターンディスカッションを行う。
MAPoRL検証器は、回答の正しさを検証するスコアを割り当てることで、回答と議論の両方を評価する。
スコアはコトレーニング報酬として機能し、マルチエージェントRLによって最大化される。
- 参考スコア(独自算出の注目度): 26.736078756799635
- License:
- Abstract: Leveraging multiple large language models (LLMs) to build collaborative multi-agentic workflows has demonstrated significant potential. However, most previous studies focus on prompting the out-of-the-box LLMs, relying on their innate capability for collaboration, which may not improve LLMs' performance as shown recently. In this paper, we introduce a new post-training paradigm MAPoRL (Multi-Agent Post-co-training for collaborative LLMs with Reinforcement Learning), to explicitly elicit the collaborative behaviors and further unleash the power of multi-agentic LLM frameworks. In MAPoRL, multiple LLMs first generate their own responses independently and engage in a multi-turn discussion to collaboratively improve the final answer. In the end, a MAPoRL verifier evaluates both the answer and the discussion, by assigning a score that verifies the correctness of the answer, while adding incentives to encourage corrective and persuasive discussions. The score serves as the co-training reward, and is then maximized through multi-agent RL. Unlike existing LLM post-training paradigms, MAPoRL advocates the co-training of multiple LLMs together using RL for better generalization. Accompanied by analytical insights, our experiments demonstrate that training individual LLMs alone is insufficient to induce effective collaboration. In contrast, multi-agent co-training can boost the collaboration performance across benchmarks, with generalization to unseen domains.
- Abstract(参考訳): 複数の大規模言語モデル(LLM)を活用して、協調的なマルチエージェントワークフローを構築することは、大きな可能性を秘めている。
しかし, 従来の研究は, LLMの性能が向上しないようなコラボレーション能力に頼って, アウト・オブ・ザ・ボックスのLCMの推進に重点を置いている。
本稿では,Multi-Agent Post-co-training for collaborative LLMs with Reinforcement Learningを提案する。
MAPoRLでは、複数のLLMが独立して独自の応答を生成し、最終回答を協調的に改善するためのマルチターンディスカッションを行う。
最後に、MAPoRL検証器は、回答の正当性を検証するスコアを割り当て、修正的かつ説得的議論を促進するインセンティブを追加することにより、回答と議論の両方を評価する。
スコアはコトレーニング報酬として機能し、マルチエージェントRLによって最大化される。
既存のLLMポストトレーニングパラダイムとは異なり、MAPoRLはRLを併用して複数のLLMの協調学習を提唱している。
分析的な知見を伴って,LLMを個別に訓練するだけでは,効果的なコラボレーションを導き出すには不十分であることを示す。
対照的に、マルチエージェントのコトレーニングは、ベンチマーク間でのコラボレーションパフォーマンスを向上し、目に見えない領域への一般化を可能にする。
関連論文リスト
- When One LLM Drools, Multi-LLM Collaboration Rules [98.71562711695991]
私たちは、データ、スキル、人々の幅広い多様性を表現するために、マルチLLMコラボレーションを議論しています。
既存のマルチLLM協調手法を,アクセスレベルと情報交換レベルに基づいて階層構造に整理する。
コンポジションインテリジェンスとコラボレーティブAI開発への不可欠な道として,マルチLLMコラボレーションを構想する。
論文 参考訳(メタデータ) (2025-02-06T21:13:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
推論問題に対するマルチエージェントLLMトレーニング(MALT)に向けた第一歩を提示する。
提案手法では,ヘテロジニアスLSMが割り当てられた逐次的マルチエージェント構成を用いる。
我々は,MATH,GSM8k,CQAにまたがるアプローチを評価し,MALT on Llama 3.1 8Bモデルでそれぞれ14.14%,7.12%,9.40%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
我々は、共通の目標を持つ複数のエージェントの協調作業と、それら間のコミュニケーションに焦点を当てる。
また、フレームワークの言語コンポーネントによって実現されるヒューマン・イン・オン・ザ・ループのシナリオについても検討する。
論文 参考訳(メタデータ) (2024-05-17T22:10:23Z) - Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the
Key? [84.36332588191623]
本稿では,議論機構の集合を充実させる新しいグループディスカッションフレームワークを提案する。
マルチエージェントの議論は,プロンプトに実演がない場合にのみ,単一のエージェントよりも優れていることが観察された。
論文 参考訳(メタデータ) (2024-02-28T12:04:05Z) - Mutual Enhancement of Large Language and Reinforcement Learning Models
through Bi-Directional Feedback Mechanisms: A Case Study [1.3597551064547502]
我々は,大規模言語モデル(LLM)と強化学習(RL)モデルの課題に対処するために,教師による学習フレームワークを採用している。
この枠組みの中で、LLMは教師として、RLモデルは学生として機能する。
本手法の有効性を評価するために,この問題に対処し,実証実験を行うための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-12T14:35:57Z) - Theory of Mind for Multi-Agent Collaboration via Large Language Models [5.2767999863286645]
本研究では,多エージェント協調型テキストゲームにおけるLarge Language Models (LLMs) ベースのエージェントを,理論オブマインド (ToM) 推論タスクを用いて評価する。
LLMをベースとしたエージェント間の創発的協調行動と高次マインド理論の実証を行った。
論文 参考訳(メタデータ) (2023-10-16T07:51:19Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。