Whole-Body Image-to-Image Translation for a Virtual Scanner in a Healthcare Digital Twin
- URL: http://arxiv.org/abs/2503.15555v1
- Date: Tue, 18 Mar 2025 20:19:28 GMT
- Title: Whole-Body Image-to-Image Translation for a Virtual Scanner in a Healthcare Digital Twin
- Authors: Valerio Guarrasi, Francesco Di Feola, Rebecca Restivo, Lorenzo Tronchin, Paolo Soda,
- Abstract summary: We propose a framework that segments whole-body CT images into four regions-head, trunk, arms, and legs-and uses district-specific Generative Adversarial Networks (GANs) for tailored CT-to-PET translation.<n>This methodology supports healthcare Digital Twins by enabling accurate virtual PET scans from CT data, creating virtual imaging representations to monitor, predict, and optimize health outcomes.
- Score: 0.8714814768600079
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generating positron emission tomography (PET) images from computed tomography (CT) scans via deep learning offers a promising pathway to reduce radiation exposure and costs associated with PET imaging, improving patient care and accessibility to functional imaging. Whole-body image translation presents challenges due to anatomical heterogeneity, often limiting generalized models. We propose a framework that segments whole-body CT images into four regions-head, trunk, arms, and legs-and uses district-specific Generative Adversarial Networks (GANs) for tailored CT-to-PET translation. Synthetic PET images from each region are stitched together to reconstruct the whole-body scan. Comparisons with a baseline non-segmented GAN and experiments with Pix2Pix and CycleGAN architectures tested paired and unpaired scenarios. Quantitative evaluations at district, whole-body, and lesion levels demonstrated significant improvements with our district-specific GANs. Pix2Pix yielded superior metrics, ensuring precise, high-quality image synthesis. By addressing anatomical heterogeneity, this approach achieves state-of-the-art results in whole-body CT-to-PET translation. This methodology supports healthcare Digital Twins by enabling accurate virtual PET scans from CT data, creating virtual imaging representations to monitor, predict, and optimize health outcomes.
Related papers
- RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [48.21287619304126]
We propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities.<n>We construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans.<n>We develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks.
arXiv Detail & Related papers (2025-03-06T17:43:03Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Hyper-Connected Transformer Network for Multi-Modality PET-CT
Segmentation [16.999643199612244]
Co-learning complementary PET-CT imaging features is a fundamental requirement for automatic tumor segmentation.
We propose a hyper-connected transformer network that integrates a transformer network (TN) with a hyper connected fusion for multi-modality PET-CT images.
Our results with two clinical datasets show that HCT achieved better performance in segmentation accuracy when compared to the existing methods.
arXiv Detail & Related papers (2022-10-28T00:03:43Z) - Whole-Body Lesion Segmentation in 18F-FDG PET/CT [11.662584140924725]
The proposed model is designed on the basis of the joint 2D and 3D nnUNET architecture to predict lesions across the whole body.
We evaluate the proposed method in the context of AutoPet Challenge, which measures the lesion segmentation performance in the metrics of dice score, false-positive volume and false-negative volume.
arXiv Detail & Related papers (2022-09-16T10:49:53Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Segmentation of Lung Tumor from CT Images using Deep Supervision [0.8733639720576208]
Lung cancer is a leading cause of death in most countries of the world.
This paper approaches lung tumor segmentation by applying two-dimensional discrete wavelet transform (DWT) on the LOTUS dataset.
arXiv Detail & Related papers (2021-11-17T17:50:18Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Spatio-Temporal Dual-Stream Neural Network for Sequential Whole-Body PET
Segmentation [10.344707825773252]
We propose a 'dual-stream' neural network (ST-DSNN) to segment sequential whole-body PET scans.
Our ST-DSNN learns and accumulates image features from the PET images done over time.
Our results show that our method outperforms the state-of-the-art PET image segmentation methods.
arXiv Detail & Related papers (2021-06-09T10:15:20Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.