論文の概要: Efficient Post-Hoc Uncertainty Calibration via Variance-Based Smoothing
- arxiv url: http://arxiv.org/abs/2503.15583v1
- Date: Wed, 19 Mar 2025 16:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 19:01:14.560058
- Title: Efficient Post-Hoc Uncertainty Calibration via Variance-Based Smoothing
- Title(参考訳): 変動に基づく平滑化による局所的不確実性校正の効率化
- Authors: Fabian Denoodt, José Oramas,
- Abstract要約: 従来のディープニューラルネットワークにおいて,事前情報の導入が不確実性推定を改善するか否かを検討する。
私たちの焦点は、入力のサブ部分から意味のある予測ができる機械学習タスクです。
- 参考スコア(独自算出の注目度): 0.810304644344495
- License:
- Abstract: Since state-of-the-art uncertainty estimation methods are often computationally demanding, we investigate whether incorporating prior information can improve uncertainty estimates in conventional deep neural networks. Our focus is on machine learning tasks where meaningful predictions can be made from sub-parts of the input. For example, in speaker classification, the speech waveform can be divided into sequential patches, each containing information about the same speaker. We observe that the variance between sub-predictions serves as a reliable proxy for uncertainty in such settings. Our proposed variance-based scaling framework produces competitive uncertainty estimates in classification while being less computationally demanding and allowing for integration as a post-hoc calibration tool. This approach also leads to a simple extension of deep ensembles, improving the expressiveness of their predicted distributions.
- Abstract(参考訳): 最先端の不確実性推定手法は、しばしば計算的に要求されるため、従来のディープニューラルネットワークにおける事前情報の導入が不確実性推定を改善するかどうかを検討する。
私たちの焦点は、入力のサブ部分から意味のある予測ができる機械学習タスクです。
例えば、話者分類において、音声波形は、それぞれ同一話者に関する情報を含む逐次パッチに分割することができる。
サブ予測間のばらつきが,このような設定の不確実性に対する信頼性の高いプロキシとなることを観察する。
提案する分散ベースのスケーリングフレームワークは,計算負荷の低減と,ポストホックキャリブレーションツールとしての統合を可能にするとともに,分類における競合的不確実性を推定する。
このアプローチはまた、深層アンサンブルの単純な拡張をもたらし、予測された分布の表現性を改善する。
関連論文リスト
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
時間周波数領域における監視されたマスキングアプローチは、ディープニューラルネットワークを使用して乗法マスクを推定し、クリーンな音声を抽出することを目的としている。
これにより、信頼性の保証や尺度を使わずに、各入力に対する単一の見積もりが導かれる。
クリーン音声推定における不確実性モデリングの利点について検討する。
論文 参考訳(メタデータ) (2023-05-15T15:55:12Z) - Uncertainty Estimation in Deep Speech Enhancement Using Complex Gaussian
Mixture Models [19.442685015494316]
単一チャンネルのディープ音声強調手法は、その精度を測らずにクリーン音声を抽出するために単一の乗法マスクを推定することが多い。
本稿では,ニューラルネットワークによる音声強調におけるクリーン音声推定に伴う不確かさの定量化を提案する。
論文 参考訳(メタデータ) (2022-12-09T13:03:09Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
不確かさの定量化は、信頼性と信頼性のある機械学習における中心的な課題である。
最適正規化推定器のキャリブレーション曲線において, 分類精度とキャリブレーションのトレードオフを示す。
これは経験的ベイズ法とは対照的であり、高次一般化誤差と過度パラメトリゼーションにもかかわらず、我々の設定では十分に校正されていることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:01:08Z) - DBCal: Density Based Calibration of classifier predictions for
uncertainty quantification [0.0]
本稿では,機械学習手法を用いて予測の不確かさを定量化する手法を提案する。
提案手法は,2つのニューラルネットワークの出力が正しい確率を正確に推定する。
論文 参考訳(メタデータ) (2022-04-01T01:03:41Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Performance-Agnostic Fusion of Probabilistic Classifier Outputs [2.4206828137867107]
本稿では,1つのコンセンサスクラス予測を行うために,分類器の確率的出力を組み合わせる手法を提案する。
提案手法は,精度が性能指標である状況において有効である。
キャリブレーションされた確率を出力しないので、そのような確率がさらなる処理に必要となる状況には適さない。
論文 参考訳(メタデータ) (2020-09-01T16:53:29Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Distribution-free binary classification: prediction sets, confidence
intervals and calibration [106.50279469344937]
分布自由条件における二項分類のための不確実性定量化(キャリブレーション、信頼区間、予測セット)の3つの概念について検討する。
固定幅と一様質量の両双対の双対確率に対する信頼区間を導出する。
我々の「三脚」定理の結果として、双有理確率に対するこれらの信頼区間は分布自由キャリブレーションに繋がる。
論文 参考訳(メタデータ) (2020-06-18T14:17:29Z) - Optimal Change-Point Detection with Training Sequences in the Large and
Moderate Deviations Regimes [72.68201611113673]
本稿では,情報理論の観点から,新しいオフライン変化点検出問題について検討する。
基礎となる事前および変更後分布の知識は分かっておらず、利用可能なトレーニングシーケンスからのみ学習できると仮定する。
論文 参考訳(メタデータ) (2020-03-13T23:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。