Efficient Post-Hoc Uncertainty Calibration via Variance-Based Smoothing
- URL: http://arxiv.org/abs/2503.15583v1
- Date: Wed, 19 Mar 2025 16:47:15 GMT
- Title: Efficient Post-Hoc Uncertainty Calibration via Variance-Based Smoothing
- Authors: Fabian Denoodt, José Oramas,
- Abstract summary: We investigate whether incorporating prior information can improve uncertainty estimates in conventional deep neural networks.<n>Our focus is on machine learning tasks where meaningful predictions can be made from sub-parts of the input.
- Score: 0.810304644344495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since state-of-the-art uncertainty estimation methods are often computationally demanding, we investigate whether incorporating prior information can improve uncertainty estimates in conventional deep neural networks. Our focus is on machine learning tasks where meaningful predictions can be made from sub-parts of the input. For example, in speaker classification, the speech waveform can be divided into sequential patches, each containing information about the same speaker. We observe that the variance between sub-predictions serves as a reliable proxy for uncertainty in such settings. Our proposed variance-based scaling framework produces competitive uncertainty estimates in classification while being less computationally demanding and allowing for integration as a post-hoc calibration tool. This approach also leads to a simple extension of deep ensembles, improving the expressiveness of their predicted distributions.
Related papers
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.<n>We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
Supervised masking approaches in the time-frequency domain aim to employ deep neural networks to estimate a multiplicative mask to extract clean speech.
This leads to a single estimate for each input without any guarantees or measures of reliability.
We study the benefits of modeling uncertainty in clean speech estimation.
arXiv Detail & Related papers (2023-05-15T15:55:12Z) - Uncertainty Estimation in Deep Speech Enhancement Using Complex Gaussian
Mixture Models [19.442685015494316]
Single-channel deep speech enhancement approaches often estimate a single multiplicative mask to extract clean speech without a measure of its accuracy.
We propose to quantify the uncertainty associated with clean speech estimates in neural network-based speech enhancement.
arXiv Detail & Related papers (2022-12-09T13:03:09Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
Uncertainty quantification is a central challenge in reliable and trustworthy machine learning.
We show a trade-off between classification accuracy and calibration, unveiling a double descent like behavior in the calibration curve of optimally regularized estimators.
This is in contrast with the empirical Bayes method, which we show to be well calibrated in our setting despite the higher generalization error and overparametrization.
arXiv Detail & Related papers (2022-10-23T16:01:08Z) - DBCal: Density Based Calibration of classifier predictions for
uncertainty quantification [0.0]
We present a technique that quantifies the uncertainty of predictions from a machine learning method.
We prove that our method provides an accurate estimate of the probability that the outputs of two neural networks are correct.
arXiv Detail & Related papers (2022-04-01T01:03:41Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Performance-Agnostic Fusion of Probabilistic Classifier Outputs [2.4206828137867107]
We propose a method for combining probabilistic outputs of classifiers to make a single consensus class prediction.
Our proposed method works well in situations where accuracy is the performance metric.
It does not output calibrated probabilities, so it is not suitable in situations where such probabilities are required for further processing.
arXiv Detail & Related papers (2020-09-01T16:53:29Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Distribution-free binary classification: prediction sets, confidence
intervals and calibration [106.50279469344937]
We study three notions of uncertainty quantification -- calibration, confidence intervals and prediction sets -- for binary classification in the distribution-free setting.
We derive confidence intervals for binned probabilities for both fixed-width and uniform-mass binning.
As a consequence of our 'tripod' theorems, these confidence intervals for binned probabilities lead to distribution-free calibration.
arXiv Detail & Related papers (2020-06-18T14:17:29Z) - Regularizing Class-wise Predictions via Self-knowledge Distillation [80.76254453115766]
We propose a new regularization method that penalizes the predictive distribution between similar samples.
This results in regularizing the dark knowledge (i.e., the knowledge on wrong predictions) of a single network.
Our experimental results on various image classification tasks demonstrate that the simple yet powerful method can significantly improve the generalization ability.
arXiv Detail & Related papers (2020-03-31T06:03:51Z) - Optimal Change-Point Detection with Training Sequences in the Large and
Moderate Deviations Regimes [72.68201611113673]
This paper investigates a novel offline change-point detection problem from an information-theoretic perspective.
We assume that the knowledge of the underlying pre- and post-change distributions are not known and can only be learned from the training sequences which are available.
arXiv Detail & Related papers (2020-03-13T23:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.