The Change You Want To Detect: Semantic Change Detection In Earth Observation With Hybrid Data Generation
- URL: http://arxiv.org/abs/2503.15683v2
- Date: Fri, 04 Apr 2025 14:49:37 GMT
- Title: The Change You Want To Detect: Semantic Change Detection In Earth Observation With Hybrid Data Generation
- Authors: Yanis Benidir, Nicolas Gonthier, Clement Mallet,
- Abstract summary: Bi-temporal change detection at scale based on Very High Resolution (VHR) images is crucial for Earth monitoring.<n>Most approaches do not exhibit the versatility required for temporal and spatial adaptation.<n>We present HySCDG, a generative pipeline for creating a large hybrid semantic change detection dataset.
- Score: 0.8875650122536799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bi-temporal change detection at scale based on Very High Resolution (VHR) images is crucial for Earth monitoring. This remains poorly addressed so far: methods either require large volumes of annotated data (semantic case), or are limited to restricted datasets (binary set-ups). Most approaches do not exhibit the versatility required for temporal and spatial adaptation: simplicity in architecture design and pretraining on realistic and comprehensive datasets. Synthetic datasets are the key solution but still fail to handle complex and diverse scenes. In this paper, we present HySCDG a generative pipeline for creating a large hybrid semantic change detection dataset that contains both real VHR images and inpainted ones, along with land cover semantic map at both dates and the change map. Being semantically and spatially guided, HySCDG generates realistic images, leading to a comprehensive and hybrid transfer-proof dataset FSC-180k. We evaluate FSC-180k on five change detection cases (binary and semantic), from zero-shot to mixed and sequential training, and also under low data regime training. Experiments demonstrate that pretraining on our hybrid dataset leads to a significant performance boost, outperforming SyntheWorld, a fully synthetic dataset, in every configuration. All codes, models, and data are available here: https://yb23.github.io/projects/cywd/
Related papers
- TransformDAS: Mapping Φ-OTDR Signals to Riemannian Manifold for Robust Classification [2.845523526282637]
Phase-sensitive optical time-domain reflectometry (Phi-OTDR) is a widely used distributed fiber optic sensing system in engineering.<n>Machine learning algorithms for Phi-OTDR event classification require high volumes and quality of datasets.<n>One promising approach to address this issue is to augment existing data using generative models combined with a small amount of real-world data.
arXiv Detail & Related papers (2025-02-04T15:53:30Z) - EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.<n>The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.<n>Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities [5.767156832161819]
We propose AnySat, a multimodal model based on joint embedding predictive architecture (JEPA) and resolution-adaptive spatial encoders.<n>To demonstrate the advantages of this unified approach, we compile GeoPlex, a collection of $5$ multimodal datasets.<n>We then train a single powerful model on these diverse datasets simultaneously.
arXiv Detail & Related papers (2024-12-18T18:11:53Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
We introduce MetaGraspNet, a large-scale photo-realistic bin picking dataset constructed via physics-based metaverse synthesis.
The proposed dataset contains 217k RGBD images across 82 different article types, with full annotations for object detection, amodal perception, keypoint detection, manipulation order and ambidextrous grasp labels for a parallel-jaw and vacuum gripper.
We also provide a real dataset consisting of over 2.3k fully annotated high-quality RGBD images, divided into 5 levels of difficulties and an unseen object set to evaluate different object and layout properties.
arXiv Detail & Related papers (2022-08-08T08:15:34Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - CrossLoc: Scalable Aerial Localization Assisted by Multimodal Synthetic
Data [2.554905387213586]
We present a visual localization system that learns to estimate camera poses in the real world with the help of synthetic data.
To mitigate the data scarcity issue, we introduce TOPO-DataGen, a versatile synthetic data generation tool.
We also introduce CrossLoc, a cross-modal visual representation learning approach to pose estimation.
arXiv Detail & Related papers (2021-12-16T18:05:48Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
In this work, a general architecture is first formulated probabilistically to extract domain invariant feature through multi-domain image translation.
And then a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy.
Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMUSeasons dataset.
Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision.
arXiv Detail & Related papers (2020-09-16T14:43:22Z) - Virtual to Real adaptation of Pedestrian Detectors [9.432150710329607]
ViPeD is a new synthetically generated set of images collected with the graphical engine of the video game GTA V - Grand Theft Auto V.
We propose two different Domain Adaptation techniques suitable for the pedestrian detection task, but possibly applicable to general object detection.
Experiments show that the network trained with ViPeD can generalize over unseen real-world scenarios better than the detector trained over real-world data.
arXiv Detail & Related papers (2020-01-09T14:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.