Accelerating Transient CFD through Machine Learning-Based Flow Initialization
- URL: http://arxiv.org/abs/2503.15766v3
- Date: Thu, 12 Jun 2025 18:55:14 GMT
- Title: Accelerating Transient CFD through Machine Learning-Based Flow Initialization
- Authors: Peter Sharpe, Rishikesh Ranade, Kaustubh Tangsali, Mohammad Amin Nabian, Ram Cherukuri, Sanjay Choudhry,
- Abstract summary: We present a machine learning-based initialization method that aims to reduce the cost of transient solve by providing more accurate initial fields.<n>We demonstrate 50% reductions in time-to-convergence compared to traditional uniform and potential flow-based initializations.
- Score: 0.9754425335596745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transient computational fluid dynamics (CFD) simulations are essential for many industrial applications, but suffer from high compute costs relative to steady-state simulations. This is due to the need to: (a) reach statistical steadiness by physically advecting errors in the initial field sufficiently far downstream, and (b) gather a sufficient sample of fluctuating flow data to estimate time-averaged quantities of interest. We present a machine learning-based initialization method that aims to reduce the cost of transient solve by providing more accurate initial fields. Through a case study in automotive aerodynamics on a 17M-cell unsteady incompressible RANS simulation, we evaluate three proposed ML-based initialization strategies against existing methods. Here, we demonstrate 50% reductions in time-to-convergence compared to traditional uniform and potential flow-based initializations. Two ML-based initialization strategies are recommended for general use: (1) a hybrid method combining ML predictions with potential flow solutions, and (2) an approach integrating ML predictions with uniform flow. Both strategies enable CFD solvers to achieve convergence times comparable to computationally-expensive steady RANS initializations, while requiring far less wall-clock time to compute the initialization field. Notably, these improvements are achieved using an ML model trained on a different dataset of diverse automotive geometries, demonstrating generalization capabilities relevant to specific industrial application areas. Because this Hybrid-ML workflow only modifies the inputs to an existing CFD solver, rather than modifying the solver itself, it can be applied to existing CFD workflows with relatively minimal changes; this provides a practical approach to accelerating industrial CFD simulations using existing ML surrogate models.
Related papers
- Learnable-Differentiable Finite Volume Solver for Accelerated Simulation of Flows [40.06403338393609]
We propose a learnable and differentiable finite volume solver, called LDr, for efficient and accurate simulation of fluid flows on coarse grids.<n>Experiments show that LDr achieves efficiency, surpassing baseline models with notable margins.
arXiv Detail & Related papers (2025-06-23T14:22:27Z) - An Adaptive Framework for Autoregressive Forecasting in CFD Using Hybrid Modal Decomposition and Deep Learning [3.1337872355726084]
This work presents, to the best of the authors' knowledge, the first generalizable and fully data-driven adaptive framework designed to stabilize deep learning (DL) autoregressive forecasting models over long time horizons.<n>The proposed methodology alternates between two phases: (i) predicting the evolution of the flow field over a selected time interval using a trained DL model, and (ii) updating the model with newly generated CFD data when stability degrades, thus maintaining accurate long-term forecasting.<n>The framework is validated across three increasingly complex flow regimes, from laminar to turbulent, demonstrating from 30 % to 95
arXiv Detail & Related papers (2025-05-02T18:33:41Z) - Using Parametric PINNs for Predicting Internal and External Turbulent Flows [6.387263468033964]
We build upon the previously proposed RANS-PINN framework, which only focused on predicting flow over a cylinder.
We investigate its accuracy in predicting relevant turbulent flow variables for both internal and external flows.
arXiv Detail & Related papers (2024-10-24T17:08:20Z) - Coupling Machine Learning Local Predictions with a Computational Fluid Dynamics Solver to Accelerate Transient Buoyant Plume Simulations [0.0]
This study presents a versatile and scalable hybrid methodology, combining CFD and machine learning.
The objective was to leverage local features to predict the temporal changes in the pressure field in comparable scenarios.
Pressure estimates were employed as initial values to accelerate the pressure-velocity coupling procedure.
arXiv Detail & Related papers (2024-09-11T10:38:30Z) - A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)<n>The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - Higher order quantum reservoir computing for non-intrusive reduced-order models [0.0]
Quantum reservoir computing technique (QRC) is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems.
We show that QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner.
arXiv Detail & Related papers (2024-07-31T13:37:04Z) - Improving Pseudo-Time Stepping Convergence for CFD Simulations With
Neural Networks [44.99833362998488]
Navier-Stokes equations may exhibit a highly nonlinear behavior.
The system of nonlinear equations resulting from the discretization of the Navier-Stokes equations can be solved using nonlinear iteration methods, such as Newton's method.
In this paper, pseudo-transient continuation is employed in order to improve nonlinear convergence.
arXiv Detail & Related papers (2023-10-10T15:45:19Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - Adaptive physics-informed neural operator for coarse-grained
non-equilibrium flows [0.0]
The framework combines dimensionality reduction and neural operators through a hierarchical and adaptive deep learning strategy.
The proposed surrogate's architecture is structured as a tree, with leaf nodes representing separate neural operator blocks.
In 0-D scenarios, the proposed ML framework can adaptively predict the dynamics of almost thirty species with a maximum relative error of 4.5%.
arXiv Detail & Related papers (2022-10-27T23:26:57Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Residual-based physics-informed transfer learning: A hybrid method for
accelerating long-term CFD simulations via deep learning [0.9217021281095907]
The feasibility of RePIT strategy was verified through a CFD case study on natural convection.
Our RePIT strategy is a promising technique to reduce the cost of CFD simulations in industry.
arXiv Detail & Related papers (2022-06-14T13:11:22Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
Recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms.
These RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation.
We propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer.
arXiv Detail & Related papers (2022-04-18T17:53:44Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - Accelerating Part-Scale Simulation in Liquid Metal Jet Additive
Manufacturing via Operator Learning [0.0]
Part-scale predictions require many small-scale simulations.
A model describing droplet coalescence for LMJ may include coupled incompressible fluid flow, heat transfer, and phase change equations.
We apply an operator learning approach to learn a mapping between initial and final states of the droplet coalescence process.
arXiv Detail & Related papers (2022-02-02T17:24:16Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.