Learnable-Differentiable Finite Volume Solver for Accelerated Simulation of Flows
- URL: http://arxiv.org/abs/2507.01975v1
- Date: Mon, 23 Jun 2025 14:22:27 GMT
- Title: Learnable-Differentiable Finite Volume Solver for Accelerated Simulation of Flows
- Authors: Mengtao Yan, Qi Wang, Haining Wang, Ruizhi Chengze, Yi Zhang, Hongsheng Liu, Zidong Wang, Fan Yu, Qi Qi, Hao Sun,
- Abstract summary: We propose a learnable and differentiable finite volume solver, called LDr, for efficient and accurate simulation of fluid flows on coarse grids.<n>Experiments show that LDr achieves efficiency, surpassing baseline models with notable margins.
- Score: 40.06403338393609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation of fluid flows is crucial for modeling physical phenomena like meteorology, aerodynamics, and biomedicine. Classical numerical solvers often require fine spatiotemporal grids to satisfy stability, consistency, and convergence conditions, leading to substantial computational costs. Although machine learning has demonstrated better efficiency, they typically suffer from issues of interpretability, generalizability, and data dependency. Hence, we propose a learnable and differentiable finite volume solver, called LDSolver, designed for efficient and accurate simulation of fluid flows on spatiotemporal coarse grids. LDSolver comprises two key components: (1) a differentiable finite volume solver, and (2) an learnable module providing equivalent approximation for fluxes (derivatives and interpolations), and temporal error correction on coarse grids. Even with limited training data (e.g., only a few trajectories), our model could accelerate the simulation while maintaining a high accuracy with superior generalizability. Experiments on different flow systems (e.g., Burgers, decaying, forced and shear flows) show that LDSolver achieves state-of-the-art performance, surpassing baseline models with notable margins.
Related papers
- Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time [57.30651532625017]
We present a novel hybrid method that integrates numerical simulation, neural physics, and generative control.<n>Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions.<n>We promise to release both models and data upon acceptance.
arXiv Detail & Related papers (2025-05-25T01:27:18Z) - PICT -- A Differentiable, GPU-Accelerated Multi-Block PISO Solver for Simulation-Coupled Learning Tasks in Fluid Dynamics [59.38498811984876]
We present our fluid simulator PICT, a differentiable pressure-implicit solver coded in PyTorch with Graphics-processing-unit (GPU) support.<n>We first verify the accuracy of both the forward simulation and our derived gradients in various established benchmarks.<n>We show that the gradients provided by our solver can be used to learn complicated turbulence models in 2D and 3D.
arXiv Detail & Related papers (2025-05-22T17:55:10Z) - LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE [8.014720523981385]
We propose LaPON, an operator network inspired by the Lagrange's mean value theorem.<n>It embeds prior knowledge directly into the neural network architecture instead of the loss function.<n>LaPON provides a scalable and reliable solution for high-fidelity fluid dynamics simulation.
arXiv Detail & Related papers (2025-05-18T10:45:17Z) - Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence [3.0954913678141627]
We identify that the Fourier neural operator (FNO) based models combined with a partial differential equation (PDE) solver can accelerate fluid dynamic simulations.
We also discuss the pitfalls of purely data-driven approaches that need to be avoided by the machine learning models to become viable and competitive tools for long time simulations of turbulence.
arXiv Detail & Related papers (2024-09-23T02:02:02Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
We develop a weakly-supervised approach to solve the steady-state Navier-Stokes equations under various boundary conditions.
We achieve state-of-the-art results without any labeled simulation data.
We train stacked models of increasing complexity generating the numerical solutions for N-S equations.
arXiv Detail & Related papers (2021-12-13T05:08:55Z) - Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models [0.2538209532048866]
Reduced order models (ROMs) provide reliable approximations to parameter-dependent fluid dynamics problems in rapid times.
Deep learning (DL)-based ROMs overcome all these limitations by learning in a non-intrusive way both the nonlinear trial manifold and the reduced dynamics.
The resulting POD-DL-ROMs are shown to provide accurate results in almost real-time for the flow around a cylinder benchmark, the fluid-structure interaction between an elastic beam attached to a fixed, rigid block and a laminar incompressible flow, and the blood flow in a cerebral aneurysm.
arXiv Detail & Related papers (2021-06-10T13:07:33Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
We use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows.
For both direct numerical simulation of turbulence and large eddy simulation, our results are as accurate as baseline solvers with 8-10x finer resolution in each spatial dimension.
Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
arXiv Detail & Related papers (2021-01-28T19:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.