Blend the Separated: Mixture of Synergistic Experts for Data-Scarcity Drug-Target Interaction Prediction
- URL: http://arxiv.org/abs/2503.15796v1
- Date: Thu, 20 Mar 2025 02:27:16 GMT
- Title: Blend the Separated: Mixture of Synergistic Experts for Data-Scarcity Drug-Target Interaction Prediction
- Authors: Xinlong Zhai, Chunchen Wang, Ruijia Wang, Jiazheng Kang, Shujie Li, Boyu Chen, Tengfei Ma, Zikai Zhou, Cheng Yang, Chuan Shi,
- Abstract summary: Drug-target interaction prediction (DTI) is essential in various applications including drug discovery and clinical application.<n>There are two perspectives of input data widely used in DTI prediction: Intrinsic data represents how drugs or targets are constructed, and extrinsic data represents how drugs or targets are related to other biological entities.<n>We propose the first method to tackle DTI prediction under input data and/or label scarcity.
- Score: 39.410724831865245
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Drug-target interaction prediction (DTI) is essential in various applications including drug discovery and clinical application. There are two perspectives of input data widely used in DTI prediction: Intrinsic data represents how drugs or targets are constructed, and extrinsic data represents how drugs or targets are related to other biological entities. However, any of the two perspectives of input data can be scarce for some drugs or targets, especially for those unpopular or newly discovered. Furthermore, ground-truth labels for specific interaction types can also be scarce. Therefore, we propose the first method to tackle DTI prediction under input data and/or label scarcity. To make our model functional when only one perspective of input data is available, we design two separate experts to process intrinsic and extrinsic data respectively and fuse them adaptively according to different samples. Furthermore, to make the two perspectives complement each other and remedy label scarcity, two experts synergize with each other in a mutually supervised way to exploit the enormous unlabeled data. Extensive experiments on 3 real-world datasets under different extents of input data scarcity and/or label scarcity demonstrate our model outperforms states of the art significantly and steadily, with a maximum improvement of 53.53%. We also test our model without any data scarcity and it still outperforms current methods.
Related papers
- KITE-DDI: A Knowledge graph Integrated Transformer Model for accurately predicting Drug-Drug Interaction Events from Drug SMILES and Biomedical Knowledge Graph [0.11049608786515838]
Drug-Drug Interactions (DDI) can cause significant bodily injury and even death.<n>Most contemporary research for predicting DDI events relies on either information from Biomedical Knowledge graphs (KG) or drug SMILES.<n>In this study, we propose a KG-integrated Transformer architecture to generate an end-to-end fully automated Machine Learning pipeline.
arXiv Detail & Related papers (2024-12-08T00:49:57Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Modular multi-source prediction of drug side-effects with DruGNN [3.229607826010618]
Drug Side-Effects (DSEs) have a high impact on public health, care system costs, and drug discovery processes.
To predict their occurrence, it is necessary to integrate data from heterogeneous sources.
In this work, such heterogeneous data is integrated into a graph dataset, expressively representing the relational information between different entities.
Graph Neural Networks (GNNs) are exploited to predict DSEs on our dataset with very promising results.
arXiv Detail & Related papers (2022-02-15T09:41:05Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - DIVERSE: bayesian Data IntegratiVE learning for precise drug ResponSE
prediction [27.531532648298768]
DIVERSE is a framework to predict drug responses from data of cell lines, drugs, and gene interactions.
It integrates data sources systematically, in a step-wise manner, examining the importance of each added data set in turn.
It clearly outperformed five other methods including three state-of-the-art approaches.
arXiv Detail & Related papers (2021-03-31T12:40:00Z) - Predicting Drug-Drug Interactions from Heterogeneous Data: An Embedding
Approach [20.87835183671462]
We present the first work that uses multiple data sources such as drug structure images, drug structure string representation and relational representation of drug relationships as the input.
Our empirical evaluation against several state-of-the-art methods using standalone different data types for drugs clearly demonstrate the efficacy of combining heterogeneous data in predicting DDIs.
arXiv Detail & Related papers (2021-03-19T17:25:48Z) - Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for
Annotation-efficient Cardiac Segmentation [65.81546955181781]
We propose a novel semi-supervised domain adaptation approach, namely Dual-Teacher.
The student model learns the knowledge of unlabeled target data and labeled source data by two teacher models.
We demonstrate that our approach is able to concurrently utilize unlabeled data and cross-modality data with superior performance.
arXiv Detail & Related papers (2020-07-13T10:00:44Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
We propose a new knowledge graph embedding framework for drug-drug interactions.
In our framework, the autoencoder is employed to generate high-quality negative samples.
The discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets.
arXiv Detail & Related papers (2020-04-15T21:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.