Control Pneumatic Soft Bending Actuator with Online Learning Pneumatic Physical Reservoir Computing
- URL: http://arxiv.org/abs/2503.15819v1
- Date: Thu, 20 Mar 2025 03:09:46 GMT
- Title: Control Pneumatic Soft Bending Actuator with Online Learning Pneumatic Physical Reservoir Computing
- Authors: Junyi Shen, Tetsuro Miyazaki, Kenji Kawashima,
- Abstract summary: Reservoir computing (RC) has shown effectiveness in online learning systems for controlling nonlinear systems such as soft actuators.<n>This paper introduces a PRC-based online learning framework to control the motion of a pneumatic soft bending actuator.
- Score: 3.4901787251083163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The intrinsic nonlinearities of soft robots present significant control but simultaneously provide them with rich computational potential. Reservoir computing (RC) has shown effectiveness in online learning systems for controlling nonlinear systems such as soft actuators. Conventional RC can be extended into physical reservoir computing (PRC) by leveraging the nonlinear dynamics of soft actuators for computation. This paper introduces a PRC-based online learning framework to control the motion of a pneumatic soft bending actuator, utilizing another pneumatic soft actuator as the PRC model. Unlike conventional designs requiring two RC models, the proposed control system employs a more compact architecture with a single RC model. Additionally, the framework enables zero-shot online learning, addressing limitations of previous PRC-based control systems reliant on offline training. Simulations and experiments validated the performance of the proposed system. Experimental results indicate that the PRC model achieved superior control performance compared to a linear model, reducing the root-mean-square error (RMSE) by an average of over 37% in bending motion control tasks. The proposed PRC-based online learning control framework provides a novel approach for harnessing physical systems' inherent nonlinearities to enhance the control of soft actuators.
Related papers
- Model-based controller assisted domain randomization in deep reinforcement learning: application to nonlinear powertrain control [0.0]
This study proposes a new robust control approach using the framework of deep reinforcement learning (DRL)
The problem setup is modeled via the latent Markov decision process (LMDP), a set of vanilla MDPs, for a controlled system subject to uncertainties and nonlinearities.
Compared to traditional DRL-based controls, the proposed controller design is smarter in that we can achieve a high level of generalization ability.
arXiv Detail & Related papers (2025-04-28T12:09:07Z) - Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
We propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness.<n>Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities.<n>We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-11-20T07:07:42Z) - Learning Exactly Linearizable Deep Dynamics Models [0.06554326244334867]
We propose a learning method for exactly linearizable dynamical models that can easily apply various control theories to ensure stability, reliability, etc.
The proposed model is employed for the real-time control of an automotive engine, and the results demonstrate good predictive performance and stable control under constraints.
arXiv Detail & Related papers (2023-11-30T05:40:55Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Stable Online Control of Linear Time-Varying Systems [49.41696101740271]
COCO-LQ is an efficient online control algorithm that guarantees input-to-state stability for a large class of LTV systems.
We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
arXiv Detail & Related papers (2021-04-29T06:18:49Z) - RL-Controller: a reinforcement learning framework for active structural
control [0.0]
We present a novel RL-based approach for designing active controllers by introducing RL-Controller, a flexible and scalable simulation environment.
We show that the proposed framework is easily trainable for a five story benchmark building with 65% reductions on average in inter story drifts.
In a comparative study with LQG active control method, we demonstrate that the proposed model-free algorithm learns more optimal actuator forcing strategies.
arXiv Detail & Related papers (2021-03-13T04:42:13Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.