Energy-Efficient Federated Learning and Migration in Digital Twin Edge Networks
- URL: http://arxiv.org/abs/2503.15822v1
- Date: Thu, 20 Mar 2025 03:14:23 GMT
- Title: Energy-Efficient Federated Learning and Migration in Digital Twin Edge Networks
- Authors: Yuzhi Zhou, Yaru Fu, Zheng Shi, Howard H. Yang, Kevin Hung, Yan Zhang,
- Abstract summary: We introduce a problem of digital twin association and historical data allocation for a federated learning task within DITEN.<n>Our objective is to jointly optimize the data utility of the digital twin-empowered FL task and the energy costs incurred by the long-term DITEN maintenance.
- Score: 20.32208271466825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The digital twin edge network (DITEN) is a significant paradigm in the sixth-generation wireless system (6G) that aims to organize well-developed infrastructures to meet the requirements of evolving application scenarios. However, the impact of the interaction between the long-term DITEN maintenance and detailed digital twin tasks, which often entail privacy considerations, is commonly overlooked in current research. This paper addresses this issue by introducing a problem of digital twin association and historical data allocation for a federated learning (FL) task within DITEN. To achieve this goal, we start by introducing a closed-form function to predict the training accuracy of the FL task, referring to it as the data utility. Subsequently, we carry out comprehensive convergence analyses on the proposed FL methodology. Our objective is to jointly optimize the data utility of the digital twin-empowered FL task and the energy costs incurred by the long-term DITEN maintenance, encompassing FL model training, data synchronization, and twin migration. To tackle the aforementioned challenge, we present an optimization-driven learning algorithm that effectively identifies optimized solutions for the formulated problem. Numerical results demonstrate that our proposed algorithm outperforms various baseline approaches.
Related papers
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.<n>The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.<n>We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - FedEGG: Federated Learning with Explicit Global Guidance [90.04705121816185]
Federated Learning (FL) holds great potential for diverse applications owing to its privacy-preserving nature.
Existing methods help address these challenges via optimization-based client constraints, adaptive client selection, or the use of pre-trained models or synthetic data.
We present bftextFedEGG, a new FL algorithm that constructs a global guiding task using a well-defined, easy-to-converge learning task.
arXiv Detail & Related papers (2024-04-18T04:25:21Z) - Digital Twin-Enhanced Deep Reinforcement Learning for Resource
Management in Networks Slicing [46.65030115953947]
We propose a framework consisting of a digital twin and reinforcement learning agents.
Specifically, we propose to use the historical data and the neural networks to build a digital twin model to simulate the state variation law of the real environment.
We also extend the framework to offline reinforcement learning, where solutions can be used to obtain intelligent decisions based solely on historical data.
arXiv Detail & Related papers (2023-11-28T15:25:14Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
Federated learning (FL) trains neural networks on edge devices without collecting data at a central server.
This paper proposes a hard feature matching data synthesis (HFMDS) method to share auxiliary data besides local models.
For better privacy preservation, we propose a hard feature augmentation method to transfer real features towards the decision boundary.
arXiv Detail & Related papers (2023-08-09T07:49:39Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Uplink Scheduling in Federated Learning: an Importance-Aware Approach
via Graph Representation Learning [5.903263170730936]
Federated Learning (FL) has emerged as a promising framework for distributed training of AI-based services, applications, and network procedures in 6G.
One of the major challenges affecting the performance and efficiency of 6G wireless FL systems is the massive scheduling of user devices over resource-constrained channels.
We propose a novel, energy-efficient, and importance-aware metric for client scheduling in FL applications by leveraging Unsupervised Graph Representation Learning (UGRL)
arXiv Detail & Related papers (2023-01-27T18:30:39Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
We propose a novel device-to-device (D2D)-aided coded federated learning method (D2D-CFL) for load balancing across devices.
We derive an optimal compression rate for achieving minimum processing time and establish its connection with the convergence time.
Our proposed method is beneficial for real-time collaborative applications, where the users continuously generate training data.
arXiv Detail & Related papers (2021-11-26T18:44:59Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Low-latency Federated Learning and Blockchain for Edge Association in
Digital Twin empowered 6G Networks [8.229148322933876]
Digital twins and 6th Generation mobile networks (6G) have accelerated the realization of edge intelligence in Industrial Internet of Things (IIoT)
We introduce the Digital Twin Wireless Networks (DTWN) by incorporating digital twins into wireless networks.
We propose a blockchain empowered federated learning framework running in the DTWN for collaborative computing.
arXiv Detail & Related papers (2020-11-17T04:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.