論文の概要: UniCoRN: Latent Diffusion-based Unified Controllable Image Restoration Network across Multiple Degradations
- arxiv url: http://arxiv.org/abs/2503.15868v1
- Date: Thu, 20 Mar 2025 05:42:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:34:09.543940
- Title: UniCoRN: Latent Diffusion-based Unified Controllable Image Restoration Network across Multiple Degradations
- Title(参考訳): UniCoRN: 複数の劣化にまたがる遅延拡散に基づく一元制御可能画像復元ネットワーク
- Authors: Debabrata Mandal, Soumitri Chattopadhyay, Guansen Tong, Praneeth Chakravarthula,
- Abstract要約: 複数種類の劣化を同時に処理できる統一画像復元手法UniCoRNを提案する。
具体的には、制御可能な拡散モデルを導く際に、画像から抽出した低レベルの視覚的手がかりの可能性を明らかにする。
MetaRestoreも導入しています。MetaRestoreは、複数の劣化やアーティファクトの画像を含むメタレンスイメージングベンチマークです。
- 参考スコア(独自算出の注目度): 4.892790389883125
- License:
- Abstract: Image restoration is essential for enhancing degraded images across computer vision tasks. However, most existing methods address only a single type of degradation (e.g., blur, noise, or haze) at a time, limiting their real-world applicability where multiple degradations often occur simultaneously. In this paper, we propose UniCoRN, a unified image restoration approach capable of handling multiple degradation types simultaneously using a multi-head diffusion model. Specifically, we uncover the potential of low-level visual cues extracted from images in guiding a controllable diffusion model for real-world image restoration and we design a multi-head control network adaptable via a mixture-of-experts strategy. We train our model without any prior assumption of specific degradations, through a smartly designed curriculum learning recipe. Additionally, we also introduce MetaRestore, a metalens imaging benchmark containing images with multiple degradations and artifacts. Extensive evaluations on several challenging datasets, including our benchmark, demonstrate that our method achieves significant performance gains and can robustly restore images with severe degradations. Project page: https://codejaeger.github.io/unicorn-gh
- Abstract(参考訳): 画像復元は、コンピュータビジョンタスクにおける劣化画像の強化に不可欠である。
しかし、既存のほとんどのメソッドは、一度に1つのタイプの劣化(例えば、ぼやけ、ノイズ、ヘイズ)だけに対処し、複数の劣化が同時に起こるような現実の応用性を制限する。
本論文では,マルチヘッド拡散モデルを用いて複数の劣化型を同時に処理できる統一画像復元手法UniCoRNを提案する。
具体的には、実世界の画像復元のための制御可能な拡散モデルを導く際に、画像から抽出した低レベルの視覚的手がかりの可能性を明らかにするとともに、エキスパートの混合戦略により適応可能なマルチヘッド制御ネットワークを設計する。
私たちは、スマートに設計されたカリキュラム学習レシピを通じて、特定の劣化を前提にモデルをトレーニングします。
さらにMetaRestoreも導入しています。MetaRestoreは、複数の分解やアーティファクトを含む画像を含むメタレンスイメージングベンチマークです。
我々のベンチマークを含むいくつかの挑戦的データセットに対する広範囲な評価は、我々の手法が顕著な性能向上を実現し、深刻な劣化を伴う画像の堅牢な復元を可能にすることを実証している。
プロジェクトページ: https://codejaeger.github.io/unicorn-gh
関連論文リスト
- UniRestorer: Universal Image Restoration via Adaptively Estimating Image Degradation at Proper Granularity [79.90839080916913]
We present our UniRestorer with improve restoration performance。
具体的には、劣化空間上で階層的クラスタリングを行い、マルチグラニュラリティ・ミックス・オブ・エキスパート(MoE)復元モデルを訓練する。
UniRestorerは、既存の劣化診断法と -aware 法とは対照的に、劣化推定を利用して劣化特定回復の恩恵を受けることができる。
論文 参考訳(メタデータ) (2024-12-28T14:09:08Z) - Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
既存の統合手法は、マルチタスク学習問題として、多重劣化画像復元を扱う。
本稿では,複数のローランクアダプタ(LoRA)をベースとした汎用画像復元フレームワークを提案する。
本フレームワークは, 学習前の生成モデルを多段劣化復元のための共有コンポーネントとして利用し, 特定の劣化画像復元タスクに転送する。
論文 参考訳(メタデータ) (2024-09-30T11:16:56Z) - Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
効率的な画像復元のためのマルチスケール状態空間モデル(MS-Mamba)を提案する。
提案手法は,計算複雑性を低く保ちながら,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-19T16:42:58Z) - Review Learning: Advancing All-in-One Ultra-High-Definition Image Restoration Training Method [7.487270862599671]
本稿では,bfReview Learning という一般画像復元モデルの学習パラダイムを提案する。
このアプローチは、いくつかの劣化したデータセット上のイメージ復元モデルのシーケンシャルなトレーニングと、レビューメカニズムの組み合わせから始まります。
コンシューマグレードのGPU上で4K解像度で画像の劣化を効率的に推論できる軽量な全目的画像復元ネットワークを設計する。
論文 参考訳(メタデータ) (2024-08-13T08:08:45Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
この研究は、能動的視覚言語モデルと合成分解パイプラインを活用して、野生(ワイルドIR)における画像復元を学習する。
我々の基底拡散モデルは画像復元SDE(IR-SDE)である。
論文 参考訳(メタデータ) (2024-04-15T12:34:21Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
我々は新しいオールインワン・マルチデグレーション画像復元ネットワーク(AMIRNet)を提案する。
AMIRNetは、クラスタリングによって木構造を段階的に構築することで、未知の劣化画像の劣化表現を学習する。
この木構造表現は、様々な歪みの一貫性と不一致を明示的に反映しており、画像復元の具体的な手がかりとなっている。
論文 参考訳(メタデータ) (2023-08-06T04:51:41Z) - PromptIR: Prompting for All-in-One Blind Image Restoration [64.02374293256001]
我々は、オールインワン画像復元のためのプロンプトIR(PromptIR)を提案する。
本手法では, 劣化特異的情報をエンコードするプロンプトを用いて, 復元ネットワークを動的に案内する。
PromptIRは、軽量なプロンプトがほとんどない汎用的で効率的なプラグインモジュールを提供する。
論文 参考訳(メタデータ) (2023-06-22T17:59:52Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。