論文の概要: From Structured Prompts to Open Narratives: Measuring Gender Bias in LLMs Through Open-Ended Storytelling
- arxiv url: http://arxiv.org/abs/2503.15904v1
- Date: Thu, 20 Mar 2025 07:15:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:52.908072
- Title: From Structured Prompts to Open Narratives: Measuring Gender Bias in LLMs Through Open-Ended Storytelling
- Title(参考訳): 構造化プロンプトからオープンナラティブへ:オープンエンドストーリーテリングによるLDMにおけるジェンダーバイアスの測定
- Authors: Evan Chen, Run-Jun Zhan, Yan-Bai Lin, Hung-Hsuan Chen,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、社会的偏見を反映または増幅する傾向について懸念が持たれている。
本研究では, LLMにおけるジェンダーバイアスを明らかにするための新たな評価枠組みを提案する。
- 参考スコア(独自算出の注目度): 2.4374097382908477
- License:
- Abstract: Large Language Models (LLMs) have revolutionized natural language processing, yet concerns persist regarding their tendency to reflect or amplify social biases present in their training data. This study introduces a novel evaluation framework to uncover gender biases in LLMs, focusing on their occupational narratives. Unlike previous methods relying on structured scenarios or carefully crafted prompts, our approach leverages free-form storytelling to reveal biases embedded in the models. Systematic analyses show an overrepresentation of female characters across occupations in six widely used LLMs. Additionally, our findings reveal that LLM-generated occupational gender rankings align more closely with human stereotypes than actual labor statistics. These insights underscore the need for balanced mitigation strategies to ensure fairness while avoiding the reinforcement of new stereotypes.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、トレーニングデータに存在する社会的偏見を反映または増幅する傾向について懸念が持たれている。
本研究では, LLMにおけるジェンダーバイアスを明らかにするための新たな評価枠組みを提案する。
構造化シナリオや慎重に構築されたプロンプトに依存する従来の手法とは異なり、我々の手法は自由形式のストーリーテリングを利用してモデルに埋め込まれたバイアスを明らかにする。
システマティック分析では、広く使用されている6つのLSMにおいて、職業における女性キャラクターの過剰表現が示される。
さらに, LLMによる職業性ランキングは, 実際の労働統計よりも, ヒトのステレオタイプと密接に一致していることが明らかとなった。
これらの知見は、新しいステレオタイプの強化を回避しつつ、公平性を確保するためのバランスのとれた緩和戦略の必要性を浮き彫りにした。
関連論文リスト
- Profiling Bias in LLMs: Stereotype Dimensions in Contextual Word Embeddings [1.5379084885764847]
大規模言語モデル(LLM)は、人工知能(AI)の現在の成功の基礎である。
リスクを効果的に伝達し、緩和努力を促進するために、これらのモデルは識別特性を適切に直感的に記述する必要がある。
社会心理学研究の辞書に基づくステレオタイプ次元に関するバイアスプロファイルを提案する。
論文 参考訳(メタデータ) (2024-11-25T16:14:45Z) - Fairness in Large Language Models in Three Hours [2.443957114877221]
このチュートリアルは、大規模言語モデルに関する文献の最近の進歩を体系的に概説する。
LLMにおける公平性の概念を考察し、バイアスを評価するための戦略と公正性を促進するために設計されたアルゴリズムを要約する。
論文 参考訳(メタデータ) (2024-08-02T03:44:14Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
大規模言語モデル(LLM)はバイアス応答を生成することができる。
条件生成に基づく間接探索フレームワークを提案する。
LLMにおける明示的・暗黙的な性バイアスを明らかにするための3つの戦略を探求する。
論文 参考訳(メタデータ) (2024-02-17T04:48:55Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
ステレオタイピングを減らすために,大規模言語モデルのゼロショット機能を活用している。
自己嫌悪は、9つの異なる社会集団におけるステレオタイピングの度合いを著しく低下させることが示される。
この研究が、バイアス軽減のための他のゼロショット技術に関する調査をオープンにすることを願っている。
論文 参考訳(メタデータ) (2024-02-03T01:40:11Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
大規模言語モデル(LLM)はバイアスと有害な応答を生成する。
本研究では,あらかじめ定義されたジェンダーフレーズやステレオタイプを必要としない条件付きテキスト生成機構を提案する。
論文 参考訳(メタデータ) (2023-11-01T05:31:46Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
大規模言語モデル(LLM)は、個人が様々な種類のコンテンツを書くのを支援する効果的なツールとして最近登場した。
本稿では, LLM 生成した参照文字の性別バイアスについて批判的に検討する。
論文 参考訳(メタデータ) (2023-10-13T16:12:57Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
本稿では,ジェンダーステレオタイプに関する大規模言語モデルの振る舞いについて考察する。
我々は、WinoBiasとは違って、性別バイアスの存在をテストするための単純なパラダイムを用いています。
a) LLMは、人の性別とステレオタイプ的に一致した職業を選択する確率が3~6倍、(b) これらの選択は、公務員の統計に反映された基礎的真実よりも人々の知覚に適合し、(d) LLMは、我々の研究項目の95%の時間において重要な曖昧さを無視する。
論文 参考訳(メタデータ) (2023-08-28T22:32:05Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。