Denoising-based Contractive Imitation Learning
- URL: http://arxiv.org/abs/2503.15918v1
- Date: Thu, 20 Mar 2025 07:52:19 GMT
- Title: Denoising-based Contractive Imitation Learning
- Authors: Macheng Shen, Jishen Peng, Zefang Huang,
- Abstract summary: Denoising mechanism enhances contraction properties of state transition mapping.<n>Our method is straightforward to implement and can be easily integrated with existing imitation learning frameworks.<n> Empirical results demonstrate that our approach effectively improves success rate of various imitation learning tasks under noise perturbation.
- Score: 1.3518297878940662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A fundamental challenge in imitation learning is the \emph{covariate shift} problem. Existing methods to mitigate covariate shift often require additional expert interactions, access to environment dynamics, or complex adversarial training, which may not be practical in real-world applications. In this paper, we propose a simple yet effective method (DeCIL) to mitigate covariate shift by incorporating a denoising mechanism that enhances the contraction properties of the state transition mapping. Our approach involves training two neural networks: a dynamics model ( f ) that predicts the next state from the current state, and a joint state-action denoising policy network ( d ) that refines this state prediction via denoising and outputs the corresponding action. We provide theoretical analysis showing that the denoising network acts as a local contraction mapping, reducing the error propagation of the state transition and improving stability. Our method is straightforward to implement and can be easily integrated with existing imitation learning frameworks without requiring additional expert data or complex modifications to the training procedure. Empirical results demonstrate that our approach effectively improves success rate of various imitation learning tasks under noise perturbation.
Related papers
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.
To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.
Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - PreAdaptFWI: Pretrained-Based Adaptive Residual Learning for Full-Waveform Inversion Without Dataset Dependency [8.719356558714246]
Full-waveform inversion (FWI) is a method that utilizes seismic data to invert the physical parameters of subsurface media.<n>Due to its ill-posed nature, FWI is susceptible to getting trapped in local minima.<n>Various research efforts have attempted to combine neural networks with FWI to stabilize the inversion process.
arXiv Detail & Related papers (2025-02-17T15:30:17Z) - Improving generalization of robot locomotion policies via Sharpness-Aware Reinforcement Learning [0.5399800035598186]
Differentiable simulators offer improved sample efficiency through exact gradients, but can be unstable in contact-rich environments.<n>This paper introduces a novel approach integrating sharpness-aware optimization into gradient-based reinforcement learning algorithms.
arXiv Detail & Related papers (2024-11-29T14:25:54Z) - Robust Training of Neural Networks at Arbitrary Precision and Sparsity [11.177990498697845]
The discontinuous operations inherent in quantization and sparsification introduce obstacles to backpropagation.
This is particularly challenging when training deep neural networks in ultra-low precision and sparse regimes.
We propose a novel, robust, and universal solution: a denoising affine transform.
arXiv Detail & Related papers (2024-09-14T00:57:32Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
We show that it is possible to perform domain adaptation via the noise space using diffusion models.<n>In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss.<n>We present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model.
arXiv Detail & Related papers (2024-06-26T17:40:30Z) - Seismic Data Interpolation via Denoising Diffusion Implicit Models with Coherence-corrected Resampling [7.755439545030289]
Deep learning models such as U-Net often underperform when the training and test missing patterns do not match.
We propose a novel framework that is built upon the multi-modal diffusion models.
Inference phase, we introduce the denoising diffusion implicit model to reduce the number of sampling steps.
To enhance the coherence and continuity between the revealed traces and the missing traces, we propose two strategies.
arXiv Detail & Related papers (2023-07-09T16:37:47Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
Planning at Test-time (IMPLANT) is a new meta-algorithm for imitation learning.
We demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments.
arXiv Detail & Related papers (2022-04-07T17:16:52Z) - Robust Imitation Learning from Noisy Demonstrations [81.67837507534001]
We show that robust imitation learning can be achieved by optimizing a classification risk with a symmetric loss.
We propose a new imitation learning method that effectively combines pseudo-labeling with co-training.
Experimental results on continuous-control benchmarks show that our method is more robust compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-20T10:41:37Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.