論文の概要: Digital Asset Data Lakehouse. The concept based on a blockchain research center
- arxiv url: http://arxiv.org/abs/2503.15968v1
- Date: Thu, 20 Mar 2025 09:12:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 22:26:37.213107
- Title: Digital Asset Data Lakehouse. The concept based on a blockchain research center
- Title(参考訳): ブロックチェーン研究センターを基盤としたデジタルアセットデータレイクハウス
- Authors: Raul Cristian Bag,
- Abstract要約: 本稿では、堅牢でスケーラブルでセキュアなデータ管理プラットフォームへの需要を満たすために設計された、新しいソフトウェアアーキテクチャを紹介する。
我々は、そのコンポーネントやインタラクションを含むアーキテクチャ設計の詳細を説明し、ブロックチェーンデータとデジタル資産の管理における一般的な課題にどのように対処するかを議論する。
この結果から,提案アーキテクチャは分散データ管理の効率性とスケーラビリティを向上するだけでなく,研究領域におけるイノベーションの新たな道を開くことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In the rapidly evolving landscape of digital assets and blockchain technologies, the necessity for robust, scalable, and secure data management platforms has never been more critical. This paper introduces a novel software architecture designed to meet these demands by leveraging the inherent strengths of cloud-native technologies and modular micro-service based architectures, to facilitate efficient data management, storage and access, across different stakeholders. We detail the architectural design, including its components and interactions, and discuss how it addresses common challenges in managing blockchain data and digital assets, such as scalability, data siloing, and security vulnerabilities. We demonstrate the capabilities of the platform by employing it into multiple real-life scenarios, namely providing data in near real-time to scientists in help with their research. Our results indicate that the proposed architecture not only enhances the efficiency and scalability of distributed data management but also opens new avenues for innovation in the research reproducibility area. This work lays the groundwork for future research and development in machine learning operations systems, offering a scalable and secure framework for the burgeoning digital economy.
- Abstract(参考訳): デジタル資産とブロックチェーン技術の急速な進化の中で、堅牢でスケーラブルでセキュアなデータ管理プラットフォームの必要性は、これまで以上に重要とされてきた。
本稿では、クラウドネイティブ技術とモジュール型マイクロサービスベースのアーキテクチャの固有の強みを活用して、さまざまな利害関係者間で効率的なデータ管理、ストレージ、アクセスを容易にすることによって、これらの要求を満たすように設計された、新しいソフトウェアアーキテクチャを紹介します。
コンポーネントやインタラクションを含むアーキテクチャ設計の詳細と、スケーラビリティやデータサイロ化、セキュリティ脆弱性など、ブロックチェーンデータとデジタルアセットを管理する上での一般的な課題への対処方法について議論する。
我々は、このプラットフォームを複数の実生活シナリオ、すなわち科学者にほぼリアルタイムでデータを提供し、研究を支援することで、その能力を実証する。
この結果から,提案アーキテクチャは分散データ管理の効率性とスケーラビリティを向上するだけでなく,研究再現性分野におけるイノベーションの新たな道を開くことが示唆された。
この研究は、機械学習操作システムにおける将来の研究開発の基盤となり、急成長するデジタル経済のためのスケーラブルでセキュアなフレームワークを提供する。
関連論文リスト
- FinML-Chain: A Blockchain-Integrated Dataset for Enhanced Financial Machine Learning [2.0695662173473206]
本稿では、高周波オンチェーンデータと低周波オフチェーンデータを統合するためのフレームワークを提案する。
このフレームワークは、トランザクションフィーメカニズムのような経済メカニズムを分析するためのモジュラーデータセットを生成する。
我々は、金融研究を推進し、ブロックチェーン駆動システムの理解を改善するデータセットを作成できるフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2024-11-25T10:55:11Z) - Swarm Learning: A Survey of Concepts, Applications, and Trends [3.55026004901472]
ディープラーニングモデルは、中央サーバ上の大規模なデータセットに依存しているため、プライバシとセキュリティの懸念を高めている。
Federated Learning (FL)は、汎用的で大規模な機械学習フレームワークを構築するための新しいアプローチを導入した。
Swarm Learning (SL) は Hewlett Packard Enterprise (HPE) と共同で提案されている。
SLは、セキュアでスケーラブルでプライベートなデータ管理にブロックチェーン技術を活用する、分散機械学習フレームワークである。
論文 参考訳(メタデータ) (2024-05-01T14:59:24Z) - Multi-Tier Computing-Enabled Digital Twin in 6G Networks [50.236861239246835]
産業4.0では、製造業、自動車、医療などの産業がDTベースの開発を急速に採用している。
これまでの主な課題は、通信とコンピューティングリソースに対する高い要求と、プライバシとセキュリティに関する懸念だった。
新たなDTで低レイテンシと高セキュリティを実現するため,エッジ/フォグコンピューティングとクラウドコンピューティングを組み合わせたマルチ層コンピューティングが提案されている。
論文 参考訳(メタデータ) (2023-12-28T13:02:53Z) - A Blockchain Solution for Collaborative Machine Learning over IoT [0.31410859223862103]
フェデレートラーニング(FL)とブロックチェーン技術は、これらの課題に対処するための有望なアプローチとして現れています。
我々は、漸進学習ベクトル量子化アルゴリズム(XuILVQ)とブロックチェーン技術を組み合わせた、新しいIoTソリューションを提案する。
提案アーキテクチャは,データプライバシとセキュリティを維持しながら,計算オーバーヘッドと通信オーバーヘッドを削減することにより,既存のブロックチェーンベースのFLソリューションの欠点に対処する。
論文 参考訳(メタデータ) (2023-11-23T18:06:05Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - APPFLChain: A Privacy Protection Distributed Artificial-Intelligence
Architecture Based on Federated Learning and Consortium Blockchain [6.054775780656853]
APPFLChainと呼ばれる新しいシステムアーキテクチャを提案する。
これはHyperledger Fabricベースのブロックチェーンとフェデレーション学習パラダイムの統合アーキテクチャである。
我々の新しいシステムは、機密性の高い個人情報をサーバに共有する必要がないため、高いセキュリティとプライバシを維持することができる。
論文 参考訳(メタデータ) (2022-06-26T05:30:07Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - YMIR: A Rapid Data-centric Development Platform for Vision Applications [82.67319997259622]
本稿では,コンピュータビジョンアプリケーションの開発を迅速化するオープンソースプラットフォームについて紹介する。
このプラットフォームは、効率的なデータ開発を機械学習開発プロセスの中心に置く。
論文 参考訳(メタデータ) (2021-11-19T05:02:55Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z) - Knowledge Integration of Collaborative Product Design Using Cloud
Computing Infrastructure [65.2157099438235]
本論文の主な焦点は、クラウドコンピューティングインフラを用いた協調製品設計・開発のための知識統合サービスの提供に関する継続的な研究のコンセプトである。
提案された知識統合サービスは,知識リソースへのリアルタイムアクセスを提供することによってユーザを支援する。
論文 参考訳(メタデータ) (2020-01-16T18:44:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。