論文の概要: TVineSynth: A Truncated C-Vine Copula Generator of Synthetic Tabular Data to Balance Privacy and Utility
- arxiv url: http://arxiv.org/abs/2503.15972v1
- Date: Thu, 20 Mar 2025 09:16:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:47.553504
- Title: TVineSynth: A Truncated C-Vine Copula Generator of Synthetic Tabular Data to Balance Privacy and Utility
- Title(参考訳): TVineSynth: プライバシとユーティリティのバランスをとるために合成タブラリデータのC-Vine Copulaジェネレータ
- Authors: Elisabeth Griesbauer, Claudia Czado, Arnoldo Frigessi, Ingrid Hobæk Haff,
- Abstract要約: TVine Synthは、プライバシとユーティリティのバランスをとるために設計された合成データジェネレータである。
推定データ生成分布の制御近似を実行する。
TVine Synthは競合モデルと比較して、プライバシーとユーティリティのバランスが優れている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose TVineSynth, a vine copula based synthetic tabular data generator, which is designed to balance privacy and utility, using the vine tree structure and its truncation to do the trade-off. Contrary to synthetic data generators that achieve DP by globally adding noise, TVineSynth performs a controlled approximation of the estimated data generating distribution, so that it does not suffer from poor utility of the resulting synthetic data for downstream prediction tasks. TVineSynth introduces a targeted bias into the vine copula model that, combined with the specific tree structure of the vine, causes the model to zero out privacy-leaking dependencies while relying on those that are beneficial for utility. Privacy is here measured with membership (MIA) and attribute inference attacks (AIA). Further, we theoretically justify how the construction of TVineSynth ensures AIA privacy under a natural privacy measure for continuous sensitive attributes. When compared to competitor models, with and without DP, on simulated and on real-world data, TVineSynth achieves a superior privacy-utility balance.
- Abstract(参考訳): そこで本研究では,Vine 木構造とトランケーションを用いて,プライバシとユーティリティのバランスをとるために,Vine コプラをベースとした合成表型データジェネレータ TVineSynth を提案する。
グローバルなノイズ付加によるDPを実現する合成データ生成装置とは対照的に、TVineSynthは推定データ生成分布の制御近似を行い、結果の合成データを下流予測タスクに役立てることができない。
TVineSynthは、Vineコプラモデルにターゲットバイアスを導入し、Vineの特定のツリー構造と組み合わせることで、ユーティリティに有益なものに依存しながら、プライバシをリードする依存関係をゼロにする。
プライバシは、メンバシップ(MIA)と属性推論攻撃(AIA)によって測定される。
さらに,TVineSynthの構築によって,連続的な機密属性に対する自然なプライバシー対策の下でAIAのプライバシが確保されるのかを理論的に正当化する。
TVineSynthは、DPの有無にかかわらず、シミュレーションや実世界のデータと比較すると、プライバシーとユーティリティのバランスが優れている。
関連論文リスト
- A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models [3.672850225066168]
生成AIと大規模言語モデル(LLM)は、合成データを生成するための新たな道を開いた。
潜在的なメリットにもかかわらず、プライバシー漏洩に関する懸念が浮上している。
我々は,合成表データの忠実さ,有用性,およびプライバシー保護を評価するために設計されたオープンソースの評価フレームワークであるSynEvalを紹介する。
論文 参考訳(メタデータ) (2024-04-20T08:08:28Z) - Quantifying and Mitigating Privacy Risks for Tabular Generative Models [13.153278585144355]
生成モデルからの合成データは、プライバシを保存するデータ共有ソリューションとして現れる。
本稿では,DP-TLDM,差分プライベートタブララプレント拡散モデルを提案する。
DP-TLDMは, 平均データ類似度35%, 下流タスク用ユーティリティ15%, データの識別性50%で, 合成品質の向上を図っている。
論文 参考訳(メタデータ) (2024-03-12T17:27:49Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - The Inadequacy of Similarity-based Privacy Metrics: Privacy Attacks against "Truly Anonymous" Synthetic Datasets [12.730435519914415]
実世界の合成データデプロイメントで使用されるプライバシメトリクスを調べ、その信頼性をいくつかの点で実証する。
ReconSynは、メトリクスによってプライベートと見なされるが、個々のレコードに固有の情報をリークする複数の合成データセットを生成するリコンストラクション攻撃である。
ReconSynは列車データから78-100%のアウトレーヤを復元し、ブラックボックスアクセスのみを1つの適合した生成モデルとプライバシメトリクスに含める。
論文 参考訳(メタデータ) (2023-12-08T15:42:28Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Synthcity: facilitating innovative use cases of synthetic data in
different data modalities [86.52703093858631]
Synthcityは、MLフェアネス、プライバシ、拡張における合成データの革新的なユースケースのための、オープンソースのソフトウェアパッケージである。
Synthcityは、実践者に対して、合成データにおける最先端の研究とツールへの単一のアクセスポイントを提供する。
論文 参考訳(メタデータ) (2023-01-18T14:49:54Z) - PreFair: Privately Generating Justifiably Fair Synthetic Data [17.037575948075215]
PreFairは、差分プライバシー(DP)公正な合成データ生成を可能にするシステムである。
我々は、合成データ生成シナリオに適合する正当性の概念に適応する。
論文 参考訳(メタデータ) (2022-12-20T15:01:54Z) - Noise-Aware Statistical Inference with Differentially Private Synthetic
Data [0.0]
DP合成データをまるで本物であるかのように単純に分析することは、人口レベルの推定に有効でないことを示す。
本稿では,多重計算分野の合成データ解析技術と合成データ生成技術を組み合わせることで,この問題に対処する。
我々は,最大エントロピーの原理を用いたノイズ対応合成データ生成アルゴリズム NAPSU-MQ を開発した。
論文 参考訳(メタデータ) (2022-05-28T16:59:46Z) - DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative
Networks [71.6879432974126]
本稿では,GANに基づく表型データのための公正な合成データ生成装置であるDECAFを紹介する。
DeCAFは望ましくないバイアスを除去し,高品質な合成データを生成可能であることを示す。
下流モデルの収束と公平性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-10-25T12:39:56Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。