論文の概要: SenseExpo: Efficient Autonomous Exploration with Prediction Information from Lightweight Neural Networks
- arxiv url: http://arxiv.org/abs/2503.16000v1
- Date: Thu, 20 Mar 2025 10:07:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:55.809728
- Title: SenseExpo: Efficient Autonomous Exploration with Prediction Information from Lightweight Neural Networks
- Title(参考訳): SenseExpo:軽量ニューラルネットワークからの予測情報による効率的な自律探索
- Authors: Haojia Gao, Haohua Que, Hoiian Au, Weihao Shan, Mingkai Liu, Yusen Qin, Lei Mu, Rong Zhao, Xinghua Yang, Qi Wei, Fei Qiao,
- Abstract要約: SenseExpoは、軽量な予測ネットワークに基づく効率的な自律探査フレームワークである。
我々の最小モデルでは、U-netやLaMaよりもKTHデータセットの性能が向上している。
- 参考スコア(独自算出の注目度): 3.6404856388891793
- License:
- Abstract: This paper proposes SenseExpo, an efficient autonomous exploration framework based on a lightweight prediction network, which addresses the limitations of traditional methods in computational overhead and environmental generalization. By integrating Generative Adversarial Networks (GANs), Transformer, and Fast Fourier Convolution (FFC), we designed a lightweight prediction model with merely 709k parameters. Our smallest model achieves better performance on the KTH dataset than U-net (24.5M) and LaMa (51M), delivering PSNR 9.026 and SSIM 0.718, particularly representing a 38.7% PSNR improvement over the 51M-parameter LaMa model. Cross-domain testing demonstrates its strong generalization capability, with an FID score of 161.55 on the HouseExpo dataset, significantly outperforming comparable methods. Regarding exploration efficiency, on the KTH dataset,SenseExpo demonstrates approximately a 67.9% time reduction in exploration time compared to MapEx. On the MRPB 1.0 dataset, SenseExpo achieves 77.1% time reduction roughly compared to MapEx. Deployed as a plug-and-play ROS node, the framework seamlessly integrates with existing navigation systems, providing an efficient solution for resource-constrained devices.
- Abstract(参考訳): 本稿では,計算オーバーヘッドと環境一般化における従来の手法の限界に対処する,軽量な予測ネットワークに基づく効率的な自律探索フレームワークであるSenseExpoを提案する。
GAN(Generative Adversarial Networks)、Transformer(トランスフォーマー)、Fast Fourier Convolution(FFC)を統合することで、709kのパラメータしか持たない軽量な予測モデルを設計した。
我々の最小のモデルは、U-net (24.5M) やLaMa (51M) よりもKTHデータセットの性能が向上し、PSNR 9.026 と SSIM 0.718 が提供される。
クロスドメインテストはその強力な一般化能力を示し、HouseExpoデータセットのFIDスコアは161.55で、同等のメソッドを大幅に上回っている。
探索効率については、KTHデータセット上で、SenseExpoはMapExと比較して、探索時間の67.9%の短縮を実証している。
MRPB 1.0データセットでは、SenseExpoはMapExと比べて77.1%の時間短縮を実現している。
プラグイン・アンド・プレイのROSノードとしてデプロイされたこのフレームワークは、既存のナビゲーションシステムとシームレスに統合され、リソース制約のあるデバイスに効率的なソリューションを提供する。
関連論文リスト
- TENNs-PLEIADES: Building Temporal Kernels with Orthogonal Polynomials [1.1970409518725493]
低レイテンシでオンライン分類と検出を行うために、これらのネットワークをイベントベースのデータで相互接続することに重点を置いている。
我々は3つのイベントベースのベンチマークを実験し、メモリと計算コストを大幅に削減した大きなマージンで3つすべてに対して最先端の結果を得た。
論文 参考訳(メタデータ) (2024-05-20T17:06:24Z) - ParFormer: A Vision Transformer with Parallel Mixer and Sparse Channel Attention Patch Embedding [9.144813021145039]
本稿では、並列ミキサーとスパースチャネル注意パッチ埋め込み(SCAPE)を組み込んだ視覚変換器であるParFormerを紹介する。
ParFormerは、畳み込み機構とアテンション機構を組み合わせることで、特徴抽出を改善する。
エッジデバイスのデプロイメントでは、ParFormer-Tのスループットは278.1イメージ/秒で、EdgeNeXt-Sよりも1.38ドル高い。
より大型のParFormer-Lは83.5%のTop-1精度に達し、精度と効率のバランスの取れたトレードオフを提供する。
論文 参考訳(メタデータ) (2024-03-22T07:32:21Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
本稿では, 最先端のYOLOフレームワークをベースとした, 効率的で低複雑さかつアンカーフリーな物体検出器を提案する。
我々は,訓練中の過剰適合を効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計する。
私たちのベースラインモデルは、MS 2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone 2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia上でリアルタイム要求(FPS>=30)を満たす。
論文 参考訳(メタデータ) (2023-02-15T06:05:14Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
入力テンソルを複数のチャネルグループに分割するSDTAエンコーダを導入する。
1.3Mパラメータを持つEdgeNeXtモデルでは、ImageNet-1Kで71.2%のTop-1精度を実現している。
パラメータ5.6MのEdgeNeXtモデルでは、ImageNet-1Kで79.4%のTop-1精度を実現しています。
論文 参考訳(メタデータ) (2022-06-21T17:59:56Z) - EAutoDet: Efficient Architecture Search for Object Detection [110.99532343155073]
EAutoDetフレームワークは、1.4GPU日でオブジェクト検出のための実用的なバックボーンとFPNアーキテクチャを検出できる。
本稿では,一方のエッジ上での候補演算の重みを共有し,それらを一つの畳み込みに集約することでカーネル再利用手法を提案する。
特に、発見されたアーキテクチャは最先端のオブジェクト検出NAS法を超越し、120 FPSで40.1 mAP、49.2 mAP、41.3 FPSをCOCOテストデブセットで達成している。
論文 参考訳(メタデータ) (2022-03-21T05:56:12Z) - Pixel Difference Networks for Efficient Edge Detection [71.03915957914532]
本稿では,Pixel Difference Network (PiDiNet) という軽量かつ効率的なエッジ検出アーキテクチャを提案する。
BSDS500、NYUD、Multicueのデータセットに関する大規模な実験が、その効果を示すために提供されている。
0.1M未満のパラメータを持つPiDiNetのより高速なバージョンは、200FPSのアーティファクトで同等のパフォーマンスを達成できる。
論文 参考訳(メタデータ) (2021-08-16T10:42:59Z) - Non-Parametric Adaptive Network Pruning [125.4414216272874]
アルゴリズム設計を簡略化するノンパラメトリックモデリングを導入。
顔認識コミュニティに触発されて,メッセージパッシングアルゴリズムを用いて,適応的な例示数を求める。
EPrunerは「重要」フィルタを決定する際にトレーニングデータへの依存を壊します。
論文 参考訳(メタデータ) (2021-01-20T06:18:38Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z) - Grafted network for person re-identification [14.372506245952383]
畳み込みニューラルネットワークは、人物再同定(re-ID)において顕著な効果を示した
本稿では,高精度根茎と軽量シオンをグラフトした新しいグラフトネットワーク(GraftedNet)を提案する。
実験の結果、GraftedNetはランキング1で93.02%、85.3%、76.2%、mAPで81.6%、74.7%、71.6%を達成した。
論文 参考訳(メタデータ) (2020-06-02T22:33:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。