Patch-based learning of adaptive Total Variation parameter maps for blind image denoising
- URL: http://arxiv.org/abs/2503.16010v1
- Date: Thu, 20 Mar 2025 10:24:14 GMT
- Title: Patch-based learning of adaptive Total Variation parameter maps for blind image denoising
- Authors: Claudio Fantasia, Luca Calatroni, Xavier Descombes, Rim Rekik,
- Abstract summary: We consider situations where noise could be either Gaussian or Poisson and test it to situations when the noise distribution is unknown.<n>We define a patch-based approach where at each image pixel an optimal weighting between TV regularisation and the corresponding data fidelity is learned.
- Score: 0.44998333629984877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a patch-based learning approach defined in terms of neural networks to estimate spatially adaptive regularisation parameter maps for image denoising with weighted Total Variation and test it to situations when the noise distribution is unknown. As an example, we consider situations where noise could be either Gaussian or Poisson and perform preliminary model selection by a standard binary classification network. Then, we define a patch-based approach where at each image pixel an optimal weighting between TV regularisation and the corresponding data fidelity is learned in a supervised way using reference natural image patches upon optimisation of SSIM and in a sliding window fashion. Extensive numerical results are reported for both noise models, showing significant improvement w.r.t. results obtained by means of optimal scalar regularisation.
Related papers
- Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
In this work, we incorporate this binary information of "existence of noise" as treatment into image classification tasks to improve prediction accuracy.
Motivated from causal variational inference, we propose a transformer-based architecture, that uses a latent generative model to estimate robust feature representations for noise image classification.
We also create new noisy image datasets incorporating a wide range of noise factors for performance benchmarking.
arXiv Detail & Related papers (2022-03-29T13:07:53Z) - Noise Distribution Adaptive Self-Supervised Image Denoising using
Tweedie Distribution and Score Matching [29.97769511276935]
We show that Tweedie distributions play key roles in modern deep learning era, leading to a distribution independent self-supervised image denoising formula without clean reference images.
Specifically, by combining with the recent Noise2Score self-supervised image denoising approach and the saddle point approximation of Tweedie distribution, we can provide a general closed-form denoising formula.
We show that the proposed method can accurately estimate noise models and parameters, and provide the state-of-the-art self-supervised image denoising performance in the benchmark dataset and real-world dataset.
arXiv Detail & Related papers (2021-12-05T04:36:08Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Edge Adaptive Hybrid Regularization Model For Image Deblurring [0.0]
An automated spatially adaptive regularization model is proposed for reconstruction of noisy and blurred images.
It detects the edges and then spatially adjusts the parameters of Tikhonov and TV regularization terms for each pixel according to the edge information.
Numerical simulation results demonstrate that the proposed model effectively reserves the image edges and eliminates the noise and blur at the same time.
arXiv Detail & Related papers (2020-11-20T08:12:23Z) - Statistical Analysis of Signal-Dependent Noise: Application in Blind
Localization of Image Splicing Forgery [20.533239616846874]
In this work, we apply signal-dependent noise (SDN) to splicing localization tasks.
By building a maximum a posterior Markov random field (MAP-MRF) framework, we exploit the likelihood of noise to reveal the alien region of spliced objects.
Experimental results demonstrate that our method is effective and provides a comparative localization performance.
arXiv Detail & Related papers (2020-10-30T11:53:53Z) - Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating
Back-Propagation for Saliency Detection [54.98042023365694]
We propose a noise-aware encoder-decoder framework to disentangle a clean saliency predictor from noisy training examples.
The proposed model consists of two sub-models parameterized by neural networks.
arXiv Detail & Related papers (2020-07-23T18:47:36Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
We propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs)
First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder.
We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training.
arXiv Detail & Related papers (2020-06-10T21:28:13Z) - Understanding Integrated Gradients with SmoothTaylor for Deep Neural
Network Attribution [70.78655569298923]
Integrated Gradients as an attribution method for deep neural network models offers simple implementability.
It suffers from noisiness of explanations which affects the ease of interpretability.
The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method.
arXiv Detail & Related papers (2020-04-22T10:43:19Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.