論文の概要: PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval
- arxiv url: http://arxiv.org/abs/2503.16064v1
- Date: Thu, 20 Mar 2025 11:56:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:58.009387
- Title: PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval
- Title(参考訳): PromptHash: 適応型ハッシュ検索のための親和性向上型協調型クロスモーダル学習
- Authors: Qiang Zou, Shuli Cheng, Jiayi Chen,
- Abstract要約: クロスモーダルハッシュは効率的なデータ検索とストレージ最適化のための有望なアプローチである。
PromptHashはアフィニティ・プロンプト・アウェア・コラボレーティブ・ラーニングを活用した,適応型クロスモーダルハッシュのための革新的なフレームワークである。
- 参考スコア(独自算出の注目度): 6.5710696868737175
- License:
- Abstract: Cross-modal hashing is a promising approach for efficient data retrieval and storage optimization. However, contemporary methods exhibit significant limitations in semantic preservation, contextual integrity, and information redundancy, which constrains retrieval efficacy. We present PromptHash, an innovative framework leveraging affinity prompt-aware collaborative learning for adaptive cross-modal hashing. We propose an end-to-end framework for affinity-prompted collaborative hashing, with the following fundamental technical contributions: (i) a text affinity prompt learning mechanism that preserves contextual information while maintaining parameter efficiency, (ii) an adaptive gated selection fusion architecture that synthesizes State Space Model with Transformer network for precise cross-modal feature integration, and (iii) a prompt affinity alignment strategy that bridges modal heterogeneity through hierarchical contrastive learning. To the best of our knowledge, this study presents the first investigation into affinity prompt awareness within collaborative cross-modal adaptive hash learning, establishing a paradigm for enhanced semantic consistency across modalities. Through comprehensive evaluation on three benchmark multi-label datasets, PromptHash demonstrates substantial performance improvements over existing approaches. Notably, on the NUS-WIDE dataset, our method achieves significant gains of 18.22% and 18.65% in image-to-text and text-to-image retrieval tasks, respectively. The code is publicly available at https://github.com/ShiShuMo/PromptHash.
- Abstract(参考訳): クロスモーダルハッシュは効率的なデータ検索とストレージ最適化のための有望なアプローチである。
しかし、現代の手法では意味保存、文脈整合性、情報の冗長性に重大な制限があり、検索の有効性が制限されている。
PromptHashはアフィニティ・プロンプト・アウェア・コラボレーティブ・ラーニングを活用した,適応型クロスモーダルハッシュのための革新的なフレームワークである。
我々は,親和性の促進する協調ハッシュのためのエンドツーエンドフレームワークを提案し,以下の基本的技術貢献を行う。
一 パラメータ効率を維持しつつ、文脈情報を保存するテキスト親和性促進学習機構。
(ii)状態空間モデルをトランスフォーマーネットワークで合成し、正確なクロスモーダルな特徴統合を実現する適応ゲート選択融合アーキテクチャ
三 階層的コントラスト学習により様相の不均一性を橋渡しする素早い親和性アライメント戦略。
本研究は,協調的な相互適応型ハッシュ学習における親和性に関する最初の研究であり,モダリティ間のセマンティック一貫性向上のためのパラダイムを確立するものである。
PromptHashは3つのベンチマークマルチラベルデータセットの包括的な評価を通じて、既存のアプローチよりも大幅なパフォーマンス向上を示している。
特に,NUS-WIDEデータセットでは,画像・テキスト・テキスト・画像検索タスクの18.22%と18.65%の大幅な向上を実現している。
コードはhttps://github.com/ShiShuMo/PromptHash.comで公開されている。
関連論文リスト
- RREH: Reconstruction Relations Embedded Hashing for Semi-Paired Cross-Modal Retrieval [32.06421737874828]
Restructation Relations Embedded Hashing (RREH) は、半ペア型クロスモーダル検索タスク用に設計されている。
RREHはマルチモーダルデータが共通の部分空間を共有すると仮定する。
アンカーはペアのデータからサンプリングされ ハッシュ学習の効率が向上します
論文 参考訳(メタデータ) (2024-05-28T03:12:54Z) - Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching [53.05954114863596]
画像テキストマッチングのための新しいDeep Boosting Learning (DBL)アルゴリズムを提案する。
アンカーブランチは、まずデータプロパティに関する洞察を提供するために訓練される。
ターゲットブランチは、一致したサンプルと未一致のサンプルとの相対距離をさらに拡大するために、より適応的なマージン制約を同時に課される。
論文 参考訳(メタデータ) (2024-04-28T08:44:28Z) - CoopHash: Cooperative Learning of Multipurpose Descriptor and Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image Hashing [42.67510119856105]
GAN(Generative Adversarial Networks)のような生成モデルは、画像ハッシュモデルで合成データを生成することができる。
GANは訓練が難しいため、ハッシュアプローチが生成モデルとハッシュ関数を共同で訓練するのを防ぐことができる。
本稿では,エネルギーをベースとした協調学習に基づく新しい協調ハッシュネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-09T15:42:36Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
本稿では,周辺情報をグラフ誘導ガウス分布でエンコードし,その2種類の情報をグラフ駆動生成モデルと統合することを提案する。
この近似の下では、トレーニング対象がシングルトンまたはペアワイズ文書のみを含む用語に分解可能であることを証明し、モデルが非関連文書と同じくらい効率的にトレーニングできることを示す。
論文 参考訳(メタデータ) (2021-05-27T11:29:03Z) - Unsupervised Hashing with Contrastive Information Bottleneck [39.607741586731336]
バイナリハッシュコードを学ぶためのフレームワークの適応を提案する。
具体的には、ハッシュの特定の要件を満たすために、まず目的関数を変更することを提案する。
次に、エンドツーエンドのトレーニングを容易にする確率的バイナリ表現層をモデルに導入する。
論文 参考訳(メタデータ) (2021-05-13T08:30:16Z) - Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for
Improved Cross-Modal Retrieval [80.35589927511667]
画像中のすべての単語やオブジェクトに係わるクロスアテンション機構を備えたTransformerベースのアーキテクチャを頼りに、クロスモーダル検索プロセスのテキストとビジュアルインプットへの最先端のアプローチ。
事前学習したテキスト画像のマルチモーダルモデルを効率的な検索モデルに変換する新しい微調整フレームワークを提案する。
我々は,モノリンガル,マルチリンガル,ゼロショットにおける一連の標準クロスモーダル検索ベンチマーク実験を行い,最先端クロスエンコーダに対する精度向上と大幅な効率向上を実証した。
論文 参考訳(メタデータ) (2021-03-22T15:08:06Z) - Deep Momentum Uncertainty Hashing [65.27971340060687]
我々は,新しいDeep Momentum Uncertainity Hashing (DMUH)を提案する。
トレーニング中の不確実性を明示的に推定し、不確実性情報を利用して近似過程を導出する。
提案手法は,すべてのデータセット上で最高の性能を達成し,既存の最先端手法を大きなマージンで超越する。
論文 参考訳(メタデータ) (2020-09-17T01:57:45Z) - Unsupervised Deep Cross-modality Spectral Hashing [65.3842441716661]
このフレームワークは、最適化をバイナリ最適化とハッシュ関数学習に分離する2段階のハッシュアプローチである。
本稿では,単一モダリティと二項相互モダリティを同時に学習するスペクトル埋め込みに基づく新しいアルゴリズムを提案する。
我々は、画像に強力なCNNを活用し、テキストモダリティを学ぶためのCNNベースのディープアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-08-01T09:20:11Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z) - Task-adaptive Asymmetric Deep Cross-modal Hashing [20.399984971442]
クロスモーダルハッシュは、異質なモダリティデータのセマンティックな相関関係を、識別的なセマンティックラベルを持つバイナリハッシュコードに埋め込むことを目的としている。
本稿では,タスク適応型非対称ディープクロスモーダルハッシュ(TA-ADCMH)法を提案する。
同時モーダル表現と非対称ハッシュ学習により,2つのサブ検索タスクに対するタスク適応型ハッシュ関数を学習することができる。
論文 参考訳(メタデータ) (2020-04-01T02:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。