Cultural Alignment in Large Language Models Using Soft Prompt Tuning
- URL: http://arxiv.org/abs/2503.16094v1
- Date: Thu, 20 Mar 2025 12:34:01 GMT
- Title: Cultural Alignment in Large Language Models Using Soft Prompt Tuning
- Authors: Reem I. Masoud, Martin Ferianc, Philip Treleaven, Miguel Rodrigues,
- Abstract summary: Large Language Model (LLM) alignment conventionally relies on supervised fine-tuning or reinforcement learning based alignment frameworks.<n>We propose a parameter efficient strategy that combines soft prompt tuning, which freezes the model parameters while modifying the input prompt embeddings, with Differential Evolution (DE)<n>Our method demonstrates significant improvements in LLama-3-8B-Instruct's cultural dimensions across multiple regions.
- Score: 3.4373727078460665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM) alignment conventionally relies on supervised fine-tuning or reinforcement learning based alignment frameworks. These methods typically require labeled or preference datasets and involve updating model weights to align the LLM with the training objective or reward model. Meanwhile, in social sciences such as cross-cultural studies, factor analysis is widely used to uncover underlying dimensions or latent variables that explain observed patterns in survey data. The non-differentiable nature of these measurements deriving from survey data renders the former alignment methods infeasible for alignment with cultural dimensions. To overcome this, we propose a parameter efficient strategy that combines soft prompt tuning, which freezes the model parameters while modifying the input prompt embeddings, with Differential Evolution (DE), a black-box optimization method for cases where a differentiable objective is unattainable. This strategy ensures alignment consistency without the need for preference data or model parameter updates, significantly enhancing efficiency and mitigating overfitting. Our method demonstrates significant improvements in LLama-3-8B-Instruct's cultural dimensions across multiple regions, outperforming both the Naive LLM and the In-context Learning (ICL) baseline, and effectively bridges computational models with human cultural nuances.
Related papers
- FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL) has emerged as a promising framework for distributed machine learning.<n>Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.<n>We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
arXiv Detail & Related papers (2025-03-20T04:49:40Z) - Exploring Model Editing for LLM-based Aspect-Based Sentiment Classification [17.512415475301395]
We investigate model editing to serve an efficient method for adapting large language models (LLMs) to solve aspect-based sentiment classification.<n>Our findings reveal that a distinct set of mid-layer representations is essential for detecting the sentiment polarity of given aspect words.<n>We develop a model editing approach that focuses exclusively on these critical parts of the LLM, leading to a more efficient method for adapting LLMs.
arXiv Detail & Related papers (2025-03-19T11:21:37Z) - Training Deep Learning Models with Norm-Constrained LMOs [56.00317694850397]
We study optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball.<n>We propose a new family of algorithms that uses the LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems.
arXiv Detail & Related papers (2025-02-11T13:10:34Z) - Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.<n>We introduce novel algorithms for dynamic, instance-level data reweighting.<n>Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions.
We present a comprehensive framework that includes identifying weak spots in Machine Learning models, selecting suitable augmentations, and devising effective training strategies.
Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets.
arXiv Detail & Related papers (2024-08-30T14:15:48Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - The Role of Model Architecture and Scale in Predicting Molecular Properties: Insights from Fine-Tuning RoBERTa, BART, and LLaMA [0.0]
This study introduces a systematic framework to compare the efficacy of Large Language Models (LLMs) for fine-tuning across various cheminformatics tasks.
We assessed three well-known models-RoBERTa, BART, and LLaMA-on their ability to predict molecular properties.
We found that LLaMA-based models generally offered the lowest validation loss, suggesting their superior adaptability across tasks and scales.
arXiv Detail & Related papers (2024-05-02T02:20:12Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Learning to Refit for Convex Learning Problems [11.464758257681197]
We propose a framework to learn to estimate optimized model parameters for different training sets using neural networks.
We rigorously characterize the power of neural networks to approximate convex problems.
arXiv Detail & Related papers (2021-11-24T15:28:50Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.