論文の概要: Truthful Elicitation of Imprecise Forecasts
- arxiv url: http://arxiv.org/abs/2503.16395v1
- Date: Thu, 20 Mar 2025 17:53:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:42.081423
- Title: Truthful Elicitation of Imprecise Forecasts
- Title(参考訳): 不正確な予測の真正解
- Authors: Anurag Singh, Siu Lun Chau, Krikamol Muandet,
- Abstract要約: 我々は,信頼の集合として与えられる不正確な予測を評価するための枠組みを提案する。
集約手順上でランダム化される適切なスコアリングルールを用いて,不正確予測の真正推論が達成可能であることを示す。
- 参考スコア(独自算出の注目度): 11.153198087930756
- License:
- Abstract: The quality of probabilistic forecasts is crucial for decision-making under uncertainty. While proper scoring rules incentivize truthful reporting of precise forecasts, they fall short when forecasters face epistemic uncertainty about their beliefs, limiting their use in safety-critical domains where decision-makers (DMs) prioritize proper uncertainty management. To address this, we propose a framework for scoring imprecise forecasts -- forecasts given as a set of beliefs. Despite existing impossibility results for deterministic scoring rules, we enable truthful elicitation by drawing connection to social choice theory and introducing a two-way communication framework where DMs first share their aggregation rules (e.g., averaging or min-max) used in downstream decisions for resolving forecast ambiguity. This, in turn, helps forecasters resolve indecision during elicitation. We further show that truthful elicitation of imprecise forecasts is achievable using proper scoring rules randomized over the aggregation procedure. Our approach allows DM to elicit and integrate the forecaster's epistemic uncertainty into their decision-making process, thus improving credibility.
- Abstract(参考訳): 確率的予測の質は不確実性の下での意思決定に不可欠である。
適切なスコアリングルールは正確な予測の真正な報告を動機付けるが、予測者は彼らの信念に対する認識的不確実性に直面し、意思決定者(DM)が適切な不確実性管理を優先する安全クリティカルな領域での使用を制限すると不足する。
そこで我々は,信頼の集合として与えられる不正確な予測(予測)を評価するための枠組みを提案する。
決定論的なスコアリングルールに対する既存の不可能な結果にもかかわらず、社会選択理論への接続を図り、予測曖昧性を解決するために下流決定に使用される集約ルール(平均値や最小値など)をDMが最初に共有する双方向通信フレームワークを導入することにより、真正な推論を可能にする。
このことは、予測者が浸食中の不確定を解消するのに役立つ。
さらに,集約手順上でランダム化された適切なスコアリングルールを用いることで,不正確予測の真正推論が達成可能であることを示す。
我々のアプローチは、DMが予測者の認識の不確実性を意思決定プロセスに統合し、信頼性を向上させることを可能にする。
関連論文リスト
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Bin-Conditional Conformal Prediction of Fatalities from Armed Conflict [0.5312303275762104]
ユーザ定義サブセット間の一貫したカバレッジ率を確保することにより、標準コンフォメーション予測を強化するビン条件コンフォメーション予測(BCCP)を導入する。
標準共形予測と比較すると、BCCPは局所的カバレッジを改善するが、これはわずかに広い予測間隔のコストがかかる。
論文 参考訳(メタデータ) (2024-10-18T14:41:42Z) - On Information-Theoretic Measures of Predictive Uncertainty [5.8034373350518775]
その重要性にも拘わらず、予測の不確実性の正しい測定に関するコンセンサスはいまだに解明されていない。
提案手法は, 予測の不確かさを, (I) 予測モデル (II) 真の予測分布の近似の2つの要因により分類する。
本研究では, 誤分類検出, 選択的予測, アウト・オブ・ディストリビューション検出など, 典型的な不確実性推定設定において, これらの指標を実証的に評価する。
論文 参考訳(メタデータ) (2024-10-14T17:52:18Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Second-Order Uncertainty Quantification: A Distance-Based Approach [11.539320505465149]
本稿では,2次分布に基づく予測不確実性に対する有意義な不確実性尺度が従うべきという形式的基準を提案する。
これらの基準を考慮に入れた不確実性対策を開発するための一般的な枠組みを提供し、ワッサーシュタイン距離に基づくインスタンス化を提供する。
論文 参考訳(メタデータ) (2023-12-02T01:21:41Z) - Creating Probabilistic Forecasts from Arbitrary Deterministic Forecasts
using Conditional Invertible Neural Networks [0.19573380763700712]
我々は、条件付き可逆ニューラルネットワーク(cINN)を用いて、データの基盤となる分布を学習し、この分布からの不確実性を任意の決定論的予測と組み合わせる。
我々のアプローチは、複雑な統計的損失関数やさらなる仮定を伴わずに、確率的予測を簡単に作成できる。
論文 参考訳(メタデータ) (2023-02-03T15:11:39Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
アンサンブル予測は、これまでのところ、関連する予測を生成するための最も成功したアプローチであり、その不確実性を見積もっている。
アンサンブル予測の主な制限は、高い計算コストと異なる不確実性の源を捕捉し定量化することの難しさである。
本研究は,1つの決定論的予測のみを入力として,システムの修正状態と状態不確かさを予測するために訓練されたANNの性能を評価するための概念モデル実験である。
論文 参考訳(メタデータ) (2021-11-29T16:52:17Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Right Decisions from Wrong Predictions: A Mechanism Design Alternative
to Individual Calibration [107.15813002403905]
意思決定者は、しばしば不完全な確率予測に頼る必要がある。
本稿では,予測ユーティリティが実際に取得したユーティリティと一致することを保証する補償機構を提案する。
本研究では、乗客が飛行遅延確率に基づいて、個々の旅行計画をどのように確実に最適化できるかを示すアプリケーションを示す。
論文 参考訳(メタデータ) (2020-11-15T08:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。