論文の概要: Bin-Conditional Conformal Prediction of Fatalities from Armed Conflict
- arxiv url: http://arxiv.org/abs/2410.14507v2
- Date: Tue, 11 Mar 2025 17:43:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:39:14.243667
- Title: Bin-Conditional Conformal Prediction of Fatalities from Armed Conflict
- Title(参考訳): 武装紛争による死者の両観的コンフォーマル予測
- Authors: David Randahl, Jonathan P. Williams, Håvard Hegre,
- Abstract要約: ユーザ定義サブセット間の一貫したカバレッジ率を確保することにより、標準コンフォメーション予測を強化するビン条件コンフォメーション予測(BCCP)を導入する。
標準共形予測と比較すると、BCCPは局所的カバレッジを改善するが、これはわずかに広い予測間隔のコストがかかる。
- 参考スコア(独自算出の注目度): 0.5312303275762104
- License:
- Abstract: Forecasting armed conflicts is a critical area of research with the potential to save lives and mitigate suffering. While existing forecasting models offer valuable point predictions, they often lack individual-level uncertainty estimates, limiting their usefulness for decision-making. Several approaches exist to estimate uncertainty, such as parametric and Bayesian prediction intervals, bootstrapping, quantile regression, but these methods often rely on restrictive assumptions, struggle to provide well-calibrated intervals across the full range of outcomes, or are computationally intensive. Conformal prediction offers a model-agnostic alternative that guarantees a user-specified level of coverage but typically provides only marginal coverage, potentially resulting in non-uniform coverage across different regions of the outcome space. In this paper, we introduce a novel extension called bin-conditional conformal prediction (BCCP), which enhances standard conformal prediction by ensuring consistent coverage rates across user-defined subsets (bins) of the outcome variable. We apply BCCP to simulated data as well as the forecasting of fatalities from armed conflicts, and demonstrate that it provides well-calibrated uncertainty estimates across various ranges of the outcome. Compared to standard conformal prediction, BCCP offers improved local coverage, though this comes at the cost of slightly wider prediction intervals.
- Abstract(参考訳): 武力衝突の予測は、生命を救い、苦しみを和らげる可能性に関する重要な研究分野である。
既存の予測モデルは貴重なポイント予測を提供するが、個々のレベルの不確実性推定を欠くことが多く、意思決定に有用性を制限する。
パラメトリックやベイズ予測区間、ブートストレッピング、量子回帰といった不確実性を推定するためにはいくつかのアプローチがあるが、これらの手法はしばしば制限的な仮定に頼っている。
コンフォーマル予測は、ユーザが指定したカバレッジレベルを保証するモデルに依存しない代替手段を提供するが、通常は限界カバレッジのみを提供し、結果として結果空間の異なる領域に一様でないカバレッジをもたらす可能性がある。
本稿では,BCCP(bin-conditional conformal prediction)と呼ばれる,ユーザ定義サブセット(bins)間の一貫したカバレッジ率を確保することで,標準コンフォメーション予測を強化する新たな拡張を提案する。
我々は、BCCPをシミュレーションデータに適用し、また、武装紛争による死亡率の予測を行い、その結果の様々な範囲にわたって、よく校正された不確実性推定を提供することを示した。
標準共形予測と比較すると、BCCPは局所的カバレッジを改善するが、これはわずかに広い予測間隔のコストがかかる。
関連論文リスト
- Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
有限サンプルにおいて、正確に分布のない条件付きカバレッジを達成することは不可能である。
本稿では,最も重要となる範囲を対象とするコンフォメーション予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-17T12:01:56Z) - Conformal Prediction Sets Can Cause Disparate Impact [4.61590049339329]
予測セットの提供は、決定に異なる影響を与える可能性があることを示す。
我々は,異なる影響を経験的に減少させるグループ間でセットサイズを等化することを提案する。
論文 参考訳(メタデータ) (2024-10-02T18:00:01Z) - Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
予測間隔で機械学習モデルをペアリングするための有望な方法として、コンフォーマル予測が登場した。
本研究では,深部回帰林から得られた分散度を算出し,各試料の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T19:09:53Z) - Post-selection Inference for Conformal Prediction: Trading off Coverage
for Precision [0.0]
伝統的に、共形予測推論はデータに依存しない発見レベルの仕様を必要とする。
我々は,データ依存的誤発見レベルを考慮した同時共形推論を開発する。
論文 参考訳(メタデータ) (2023-04-12T20:56:43Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。