1000+ FPS 4D Gaussian Splatting for Dynamic Scene Rendering
- URL: http://arxiv.org/abs/2503.16422v1
- Date: Thu, 20 Mar 2025 17:59:44 GMT
- Title: 1000+ FPS 4D Gaussian Splatting for Dynamic Scene Rendering
- Authors: Yuheng Yuan, Qiuhong Shen, Xingyi Yang, Xinchao Wang,
- Abstract summary: We present textbf4DGS-1K, which runs at over 1000 FPS on modern scene GPUs.<n>For Q1, we introduce the Spatial-Temporal Variation Score, a new pruning criterion that effectively removes short-lifespan Gaussians.<n>For Q2, we store a mask for active Gaussians across consecutive frames, significantly reducing redundant computations in rendering.
- Score: 60.676919690136096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 4D Gaussian Splatting (4DGS) has recently gained considerable attention as a method for reconstructing dynamic scenes. Despite achieving superior quality, 4DGS typically requires substantial storage and suffers from slow rendering speed. In this work, we delve into these issues and identify two key sources of temporal redundancy. (Q1) \textbf{Short-Lifespan Gaussians}: 4DGS uses a large portion of Gaussians with short temporal span to represent scene dynamics, leading to an excessive number of Gaussians. (Q2) \textbf{Inactive Gaussians}: When rendering, only a small subset of Gaussians contributes to each frame. Despite this, all Gaussians are processed during rasterization, resulting in redundant computation overhead. To address these redundancies, we present \textbf{4DGS-1K}, which runs at over 1000 FPS on modern GPUs. For Q1, we introduce the Spatial-Temporal Variation Score, a new pruning criterion that effectively removes short-lifespan Gaussians while encouraging 4DGS to capture scene dynamics using Gaussians with longer temporal spans. For Q2, we store a mask for active Gaussians across consecutive frames, significantly reducing redundant computations in rendering. Compared to vanilla 4DGS, our method achieves a $41\times$ reduction in storage and $9\times$ faster rasterization speed on complex dynamic scenes, while maintaining comparable visual quality. Please see our project page at https://4DGS-1K.github.io.
Related papers
- Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering [12.27734287104036]
Novel-entangleview synthesis (NVS) for dynamic scenes from 2D images presents significant challenges.
We introduce Disentangled 4D Gaussianting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations.
Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352times1014$ on a 3090 GPU.
arXiv Detail & Related papers (2025-03-28T05:46:02Z) - Efficient Gaussian Splatting for Monocular Dynamic Scene Rendering via Sparse Time-Variant Attribute Modeling [64.84686527988809]
Deformable Gaussian Splatting has emerged as a robust solution to represent real-world dynamic scenes.<n>Our approach formulates dynamic scenes using a sparse anchor-grid representation, with the motion flow of dense Gaussians calculated via a classical kernel representation.<n>Experiments on two real-world datasets demonstrate that our EDGS significantly improves the rendering speed with superior rendering quality.
arXiv Detail & Related papers (2025-02-27T18:53:06Z) - Representing Long Volumetric Video with Temporal Gaussian Hierarchy [80.51373034419379]
This paper aims to address the challenge of reconstructing long volumetric videos from multi-view RGB videos.<n>We propose a novel 4D representation, named Temporal Gaussian Hierarchy, to compactly model long volumetric videos.<n>This work is the first approach capable of efficiently handling minutes of volumetric video data while maintaining state-of-the-art rendering quality.
arXiv Detail & Related papers (2024-12-12T18:59:34Z) - 4D Scaffold Gaussian Splatting for Memory Efficient Dynamic Scene Reconstruction [27.455934322535853]
This paper proposes a 4D anchor-based framework that retains visual quality and rendering speed of 4D Gaussians while reducing storage costs.
Experimental results demonstrate that our method achieves state-of-the-art visual quality and 97.8% storage reduction over 4DGS.
arXiv Detail & Related papers (2024-11-26T02:22:07Z) - Fully Explicit Dynamic Gaussian Splatting [22.889981393105554]
3D Gaussian Splatting has shown fast and high-quality rendering results in static scenes by leveraging dense 3D prior and explicit representations.
We introduce a progressive training scheme and a point-backtracking technique that improves Ex4DGS's convergence.
Comprehensive experiments on various scenes demonstrate the state-of-the-art rendering quality from our method, achieving fast rendering of 62 fps on a single 2080Ti GPU.
arXiv Detail & Related papers (2024-10-21T04:25:43Z) - MEGA: Memory-Efficient 4D Gaussian Splatting for Dynamic Scenes [49.36091070642661]
This paper introduces a memory-efficient framework for 4DGS.
It achieves a storage reduction by approximately 190$times$ and 125$times$ on the Technicolor and Neural 3D Video datasets.
It maintains comparable rendering speeds and scene representation quality, setting a new standard in the field.
arXiv Detail & Related papers (2024-10-17T14:47:08Z) - RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting [51.51310922527121]
We present a real-time 3D reconstruction system with an RGBD camera for large-scale environments using Gaussian splatting.
We force each Gaussian to be either opaque or nearly transparent, with the opaque ones fitting the surface and dominant colors, and transparent ones fitting residual colors.
We show real-time reconstructions of a variety of large scenes and show superior performance in the realism of novel view synthesis and camera tracking accuracy.
arXiv Detail & Related papers (2024-04-30T16:54:59Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
We propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes.
A neuralvoxel encoding algorithm inspired by HexPlane is proposed to efficiently build features from 4D neural voxels.
Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$times$800 resolution on an 3090 GPU.
arXiv Detail & Related papers (2023-10-12T17:21:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.