PythonPal: Enhancing Online Programming Education through Chatbot-Driven Personalized Feedback
- URL: http://arxiv.org/abs/2503.16487v1
- Date: Sun, 09 Mar 2025 07:28:42 GMT
- Title: PythonPal: Enhancing Online Programming Education through Chatbot-Driven Personalized Feedback
- Authors: Sirinda Palahan,
- Abstract summary: PythonPal's design, featuring modules for conversation, tutorials, and exercises, was evaluated through student interactions and feedback.<n>Key findings reveal PythonPal's proficiency in syntax error recognition and user query comprehension.<n>Student feedback indicated satisfactory query understanding and feedback accuracy but also pointed out the need for faster responses and improved interaction quality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rise of online programming education has necessitated more effective, personalized interactions, a gap that PythonPal aims to fill through its innovative learning system integrated with a chatbot. This research delves into PythonPal's potential to enhance the online learning experience, especially in contexts with high student-to-teacher ratios where there is a need for personalized feedback. PythonPal's design, featuring modules for conversation, tutorials, and exercises, was evaluated through student interactions and feedback. Key findings reveal PythonPal's proficiency in syntax error recognition and user query comprehension, with its intent classification model showing high accuracy. The system's performance in error feedback, though varied, demonstrates both strengths and areas for enhancement. Student feedback indicated satisfactory query understanding and feedback accuracy but also pointed out the need for faster responses and improved interaction quality. PythonPal's deployment promises to significantly enhance online programming education by providing immediate, personalized feedback and interactive learning experiences, fostering a deeper understanding of programming concepts among students. These benefits mark a step forward in addressing the challenges of distance learning, making programming education more accessible and effective.
Related papers
- Enhancing Programming Education with ChatGPT: A Case Study on Student Perceptions and Interactions in a Python Course [7.182952031323369]
This paper explores ChatGPT's impact on learning in a Python programming course tailored for first-year students over eight weeks.
By analyzing responses from surveys, open-ended questions, and student-ChatGPT dialog data, we aim to provide a comprehensive view of ChatGPT's utility.
Our study uncovers a generally positive reception toward ChatGPT and offers insights into its role in enhancing the programming education experience.
arXiv Detail & Related papers (2024-03-20T15:47:28Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
This paper introduces YODA, a teacher-student progressive learning framework.
It emulates the teacher-student education process to improve the efficacy of model fine-tuning.
Experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain.
arXiv Detail & Related papers (2024-01-28T14:32:15Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDev is a chat-powered software development framework in which specialized agents are guided in what to communicate.
These agents actively contribute to the design, coding, and testing phases through unified language-based communication.
arXiv Detail & Related papers (2023-07-16T02:11:34Z) - Developing Effective Educational Chatbots with ChatGPT prompts: Insights
from Preliminary Tests in a Case Study on Social Media Literacy (with
appendix) [43.55994393060723]
Recent advances in language learning models with zero-shot learning capabilities, such as ChatGPT, suggest a new possibility for developing educational chatbots.
We present a case study with a simple system that enables mixed-turn chatbots interactions.
We examine ChatGPT's ability to pursue multiple interconnected learning objectives, adapt the educational activity to users' characteristics, such as culture, age, and level of education, and its ability to use diverse educational strategies and conversational styles.
arXiv Detail & Related papers (2023-06-18T22:23:18Z) - Thinking beyond chatbots' threat to education: Visualizations to
elucidate the writing and coding process [0.0]
The landscape of educational practices for teaching and learning languages has been predominantly centered around outcome-driven approaches.
The recent accessibility of large language models has thoroughly disrupted these approaches.
This work presents a new set of visualization tools to summarize the inherent and taught capabilities of a learner's writing or programming process.
arXiv Detail & Related papers (2023-04-25T22:11:29Z) - User Adaptive Language Learning Chatbots with a Curriculum [55.63893493019025]
We adapt lexically constrained decoding to a dialog system, which urges the dialog system to include curriculum-aligned words and phrases in its generated utterances.
The evaluation result demonstrates that the dialog system with curriculum infusion improves students' understanding of target words and increases their interest in practicing English.
arXiv Detail & Related papers (2023-04-11T20:41:41Z) - Generating High-Precision Feedback for Programming Syntax Errors using
Large Language Models [23.25258654890813]
Large language models (LLMs) hold great promise in enhancing programming education by automatically generating feedback for students.
We introduce PyFiXV, our technique to generate high-precision feedback powered by Codex.
arXiv Detail & Related papers (2023-01-24T13:00:25Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
Developing interactive software, such as websites or games, is a particularly engaging way to learn computer science.
Standard approaches require instructors to manually grade student-implemented interactive programs.
Online platforms that serve millions, like Code.org, are unable to provide any feedback on assignments for implementing interactive programs.
arXiv Detail & Related papers (2022-11-16T10:00:23Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.