論文の概要: Conversational AI as a Coding Assistant: Understanding Programmers' Interactions with and Expectations from Large Language Models for Coding
- arxiv url: http://arxiv.org/abs/2503.16508v1
- Date: Fri, 14 Mar 2025 15:06:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 15:40:10.048023
- Title: Conversational AI as a Coding Assistant: Understanding Programmers' Interactions with and Expectations from Large Language Models for Coding
- Title(参考訳): コーディングアシスタントとしての会話型AI:プログラミングのための大規模言語モデルからのプログラマのインタラクションと期待を理解する
- Authors: Mehmet Akhoroz, Caglar Yildirim,
- Abstract要約: 大規模言語モデル(LLM)を利用した会話型AIインタフェースは、コーディングアシスタントとしてますます利用されている。
本研究は,LLM駆動型コーディングアシスタントにおけるプログラマの利用パターン,知覚,インタラクション戦略について検討する。
- 参考スコア(独自算出の注目度): 5.064404027153094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational AI interfaces powered by large language models (LLMs) are increasingly used as coding assistants. However, questions remain about how programmers interact with LLM-based conversational agents, the challenges they encounter, and the factors influencing adoption. This study investigates programmers' usage patterns, perceptions, and interaction strategies when engaging with LLM-driven coding assistants. Through a survey, participants reported both the benefits, such as efficiency and clarity of explanations, and the limitations, including inaccuracies, lack of contextual awareness, and concerns about over-reliance. Notably, some programmers actively avoid LLMs due to a preference for independent learning, distrust in AI-generated code, and ethical considerations. Based on our findings, we propose design guidelines for improving conversational coding assistants, emphasizing context retention, transparency, multimodal support, and adaptability to user preferences. These insights contribute to the broader understanding of how LLM-based conversational agents can be effectively integrated into software development workflows while addressing adoption barriers and enhancing usability.
- Abstract(参考訳): 大規模言語モデル(LLM)を利用した会話型AIインタフェースは、コーディングアシスタントとしてますます利用されている。
しかし、プログラマがLLMベースの会話エージェントとどのように相互作用するか、彼らが直面する課題、そして採用に影響を与える要因について疑問が残る。
本研究は,LLM駆動型コーディングアシスタントにおけるプログラマの利用パターン,知覚,インタラクション戦略について検討する。
調査を通じて、参加者は、効率性や説明の明確さ、不正確さ、文脈認識の欠如、過度な信頼への懸念など、両方の利点を報告した。
一部のプログラマは、独立した学習、AI生成コードへの不信、倫理的考慮のために、LSMを積極的に避けている。
本研究は,対話型コーディングアシスタントの改良,コンテキスト保持,透明性,マルチモーダルサポート,ユーザの嗜好への適応性を重視した設計ガイドラインを提案する。
これらの洞察は、LLMベースの会話エージェントをソフトウェア開発ワークフローに効果的に統合し、導入障壁に対処し、ユーザビリティを高める方法について、より広範な理解に寄与する。
関連論文リスト
- Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines [9.834055425277874]
本研究は,学習者とAIの相互作用を,参加者が効果的なプロンプトの構造化指導を受ける教育実験を通して調査する。
ユーザの行動を評価し,有効性を促進するために,107人のユーザから642のインタラクションのデータセットを解析した。
我々の研究は、ユーザーが大規模言語モデルとどのように関わり、AI支援コミュニケーションを強化するための構造化された指導の役割についてより深く理解している。
論文 参考訳(メタデータ) (2025-04-10T15:20:43Z) - Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
大規模言語モデル(LLM)は、コンテキスト内学習(ICL)を通じて、様々なタスクで優れる
In-Context Contrastive Decoding (ICCD)を導入する。
ICCDは、正と負のインコンテキストの例の出力分布を対比することで、入力ラベルマッピングを強調する。
論文 参考訳(メタデータ) (2025-02-19T14:04:46Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - What You Need is What You Get: Theory of Mind for an LLM-Based Code Understanding Assistant [0.0]
開発者のコード理解を支援するために、多くのツールがLLM(Large Language Models)を使用している。
本研究では,LLMをベースとした対話型アシスタントの設計を行った。
コード理解の初心者を支援するためにLLMベースの会話アシスタントを開発したり改善したりしたい研究者やツールビルダーに洞察を提供する。
論文 参考訳(メタデータ) (2024-08-08T14:08:15Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training [33.57497419019826]
アクションベースのコントラスト自己学習は、多ターン会話におけるサンプル効率のよい対話ポリシー学習を可能にする。
ACTは、教師付き微調整とDPOのための標準的なアプローチよりも、相当な会話モデリングの改善を示す。
論文 参考訳(メタデータ) (2024-05-31T22:44:48Z) - Why and When LLM-Based Assistants Can Go Wrong: Investigating the
Effectiveness of Prompt-Based Interactions for Software Help-Seeking [5.755004576310333]
大規模言語モデル(LLM)アシスタントは、ユーザーがソフトウェアをナビゲートするための検索方法の潜在的な代替手段として登場した。
LLMアシスタントは、ドメイン固有のテキスト、ソフトウェアマニュアル、コードリポジトリからの膨大なトレーニングデータを使用して、人間のようなインタラクションを模倣する。
論文 参考訳(メタデータ) (2024-02-12T19:49:58Z) - Exploring Interaction Patterns for Debugging: Enhancing Conversational
Capabilities of AI-assistants [18.53732314023887]
大規模言語モデル(LLM)は、プログラマが様々なソフトウェア開発タスクの自然言語説明を得ることを可能にする。
LLMはしばしば十分な文脈なしに行動し、暗黙の仮定や不正確な反応を引き起こす。
本稿では,対話パターンと会話分析からインスピレーションを得て,デバッグのための対話型AIアシスタントRobinを設計する。
論文 参考訳(メタデータ) (2024-02-09T07:44:27Z) - Conversational Assistants in Knowledge-Intensive Contexts: An Evaluation of LLM- versus Intent-based Systems [8.88228247647452]
言語モデル(LLM)により、会話アシスタント(CA)はより柔軟で人間的な方法で会話できる。
LLMは、インテントベースのシステムよりも優れたユーザエクスペリエンス、タスク完了率、ユーザビリティ、認識パフォーマンスを示した。
論文 参考訳(メタデータ) (2024-02-07T15:39:07Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
大規模言語モデル(LLM)は言語知能の分野を劇的に拡張した。
LLMは興味をそそるチェーン・オブ・シークレット(CoT)推論技術を活用し、答えを導き出す途中の中間ステップを定式化しなければならない。
最近の研究は、自律言語エージェントの開発を促進するためにCoT推論手法を拡張している。
論文 参考訳(メタデータ) (2023-11-20T14:30:55Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z) - Using an LLM to Help With Code Understanding [13.53616539787915]
大規模言語モデル(LLM)は、コードを書くプロセスに革命をもたらしています。
プラグインはOpenAIのGPT-3.5-turboモデルに対して,ユーザが明示的なプロンプトを書かなくても4つの高レベルリクエストをクエリする。
本システムの評価は,32名の被験者を対象に行ったユーザスタディで行われ,本プラグインがWeb検索よりもタスク完了に有効であることが確認された。
論文 参考訳(メタデータ) (2023-07-17T00:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。