論文の概要: Defending Against Gradient Inversion Attacks for Biomedical Images via Learnable Data Perturbation
- arxiv url: http://arxiv.org/abs/2503.16542v1
- Date: Wed, 19 Mar 2025 01:53:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:59.797354
- Title: Defending Against Gradient Inversion Attacks for Biomedical Images via Learnable Data Perturbation
- Title(参考訳): 学習型データ摂動による生体画像の漸進的逆転攻撃に対する防御
- Authors: Shiyi Jiang, Farshad Firouzi, Krishnendu Chakrabarty,
- Abstract要約: 連合学習における勾配反転攻撃に対する防御効果を示す。
提案手法は,再構成画像の分類において,攻撃者の精度を12.5%低下させることで,ベースラインを上回り得る。
その結果,医療データに対する汎用的防衛の可能性が示唆された。
- 参考スコア(独自算出の注目度): 3.5280398899666903
- License:
- Abstract: The increasing need for sharing healthcare data and collaborating on clinical research has raised privacy concerns. Health information leakage due to malicious attacks can lead to serious problems such as misdiagnoses and patient identification issues. Privacy-preserving machine learning (PPML) and privacy-enhancing technologies, particularly federated learning (FL), have emerged in recent years as innovative solutions to balance privacy protection with data utility; however, they also suffer from inherent privacy vulnerabilities. Gradient inversion attacks constitute major threats to data sharing in federated learning. Researchers have proposed many defenses against gradient inversion attacks. However, current defense methods for healthcare data lack generalizability, i.e., existing solutions may not be applicable to data from a broader range of populations. In addition, most existing defense methods are tested using non-healthcare data, which raises concerns about their applicability to real-world healthcare systems. In this study, we present a defense against gradient inversion attacks in federated learning. We achieve this using latent data perturbation and minimax optimization, utilizing both general and medical image datasets. Our method is compared to two baselines, and the results show that our approach can outperform the baselines with a reduction of 12.5% in the attacker's accuracy in classifying reconstructed images. The proposed method also yields an increase of over 12.4% in Mean Squared Error (MSE) between the original and reconstructed images at the same level of model utility of around 90% client classification accuracy. The results suggest the potential of a generalizable defense for healthcare data.
- Abstract(参考訳): 医療データの共有や臨床研究の共同作業の必要性が高まっているため、プライバシーの懸念が高まっている。
悪意のある攻撃による健康情報漏洩は、誤診や患者の身元確認などの深刻な問題を引き起こす可能性がある。
プライバシ保護機械学習(PPML)とプライバシ強化技術(特にフェデレーション学習(FL))は、近年、プライバシ保護とデータユーティリティのバランスをとる革新的なソリューションとして登場している。
グラディエント・インバージョン・アタックは、フェデレート学習におけるデータ共有に対する大きな脅威となる。
研究者は勾配反転攻撃に対する多くの防御策を提案した。
しかし、現在の医療データに対する防衛方法は一般化性に欠けており、既存の解決策は幅広い集団のデータに適用できない可能性がある。
さらに、既存の防衛手法の多くは、非医療データを使用してテストされており、実際の医療システムへの適用性に対する懸念を提起している。
本研究では,フェデレート学習における勾配反転攻撃に対する防御効果を示す。
一般画像と医用画像の両方のデータセットを用いて、遅延データ摂動とミニマックス最適化を用いてこれを実現する。
提案手法は, 2つのベースラインと比較し, 提案手法は, 再構成画像の分類における攻撃者の精度を12.5%削減することで, ベースラインを上回り得ることを示す。
提案手法は,従来の画像と再構成画像間の平均正方形誤差(MSE)を約90%のクライアント分類精度で,12.4%以上増加させる。
その結果,医療データに対する汎用的な防衛の可能性が示唆された。
関連論文リスト
- Medical Unlearnable Examples: Securing Medical Data from Unauthorized Training via Sparsity-Aware Local Masking [24.850260039814774]
商用AIモデルのトレーニングのような、認可されていない使用の恐れは、研究者が貴重なデータセットを共有するのを妨げる。
本研究では,画像全体ではなく重要な画素領域を選択的に摂動するSALM法を提案する。
実験により,SALMは,異なるモデルの不正なトレーニングを効果的に防止し,従来のSoTAデータ保護手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-03-15T02:35:36Z) - Reconciling AI Performance and Data Reconstruction Resilience for
Medical Imaging [52.578054703818125]
人工知能(AI)モデルは、トレーニングデータの情報漏洩に対して脆弱であり、非常に敏感である。
差別化プライバシ(DP)は、定量的なプライバシー予算を設定することで、これらの感受性を回避することを目的としている。
非常に大きなプライバシ予算を使用することで、リコンストラクション攻撃は不可能であり、パフォーマンスの低下は無視可能であることを示す。
論文 参考訳(メタデータ) (2023-12-05T12:21:30Z) - Privacy-Preserving Medical Image Classification through Deep Learning
and Matrix Decomposition [0.0]
近年,医学領域において深層学習(DL)ソリューションが広く研究されている。
医療関連データの利用は厳格に規制されており、病院の外部で医療記録を処理するためには、堅牢なデータ保護措置が必要である。
本稿では, 特異値分解(SVD)と主成分分析(PCA)を用いて, DL解析に使用する前に, 医用画像の難読化を行う。
保護されたデータから関連する情報を抽出するDLアルゴリズムの能力は、難読化フレームに基づく血管造影ビュー分類のタスクに基づいて評価される。
論文 参考訳(メタデータ) (2023-08-31T08:21:09Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
本稿では、同相暗号を用いた医療データのためのプライバシー保護フェデレーション学習アルゴリズムを提案する。
提案アルゴリズムはセキュアなマルチパーティ計算プロトコルを用いて,ディープラーニングモデルを敵から保護する。
論文 参考訳(メタデータ) (2022-04-16T08:38:35Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Get your Foes Fooled: Proximal Gradient Split Learning for Defense
against Model Inversion Attacks on IoMT data [5.582293277542012]
本研究では,モデル反転攻撃に対する防御のための近勾配分割学習(PSGL)手法を提案する。
本稿では,勾配マップの復元に近似勾配法を用い,認識性能を向上させるための決定レベル融合戦略を提案する。
論文 参考訳(メタデータ) (2022-01-12T17:01:19Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Evaluation of Inference Attack Models for Deep Learning on Medical Data [16.128164765752032]
最近開発された推論攻撃アルゴリズムは、画像とテキスト記録を悪意ある当事者によって再構成可能であることを示している。
これにより、機密性の高い患者情報を含む医療画像と電子健康記録がこれらの攻撃に対して脆弱であるという懸念が生じる。
本稿では,この重要な問題に対して,医学的深層学習コミュニティの研究者の関心を惹きつけることを目的とする。
論文 参考訳(メタデータ) (2020-10-31T03:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。