論文の概要: Medical Unlearnable Examples: Securing Medical Data from Unauthorized Training via Sparsity-Aware Local Masking
- arxiv url: http://arxiv.org/abs/2403.10573v2
- Date: Sun, 7 Jul 2024 13:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 02:19:20.908604
- Title: Medical Unlearnable Examples: Securing Medical Data from Unauthorized Training via Sparsity-Aware Local Masking
- Title(参考訳): 医用未学習例:スポーサリティを意識した局所マスキングによる無許可トレーニングからの医療データ保護
- Authors: Weixiang Sun, Yixin Liu, Zhiling Yan, Kaidi Xu, Lichao Sun,
- Abstract要約: 商用AIモデルのトレーニングのような、認可されていない使用の恐れは、研究者が貴重なデータセットを共有するのを妨げる。
本研究では,画像全体ではなく重要な画素領域を選択的に摂動するSALM法を提案する。
実験により,SALMは,異なるモデルの不正なトレーニングを効果的に防止し,従来のSoTAデータ保護手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 24.850260039814774
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid expansion of AI in healthcare has led to a surge in medical data generation and storage, boosting medical AI development. However, fears of unauthorized use, like training commercial AI models, hinder researchers from sharing their valuable datasets. To encourage data sharing, one promising solution is to introduce imperceptible noise into the data. This method aims to safeguard the data against unauthorized training by inducing degradation in the generalization ability of the trained model. However, they are not effective and efficient when applied to medical data, mainly due to the ignorance of the sparse nature of medical images. To address this problem, we propose the Sparsity-Aware Local Masking (SALM) method, a novel approach that selectively perturbs significant pixel regions rather than the entire image as previously. This simple yet effective approach, by focusing on local areas, significantly narrows down the search space for disturbances and fully leverages the characteristics of sparsity. Our extensive experiments across various datasets and model architectures demonstrate that SALM effectively prevents unauthorized training of different models and outperforms previous SoTA data protection methods.
- Abstract(参考訳): 医療におけるAIの急速な拡大により、医療データ生成とストレージが急増し、医療AIの開発が加速した。
しかし、商用AIモデルのトレーニングのような不正使用の恐れは、研究者が貴重なデータセットを共有することを妨げている。
データ共有を促進するために、ある有望な解決策は、データに知覚不可能なノイズを導入することである。
本手法は、訓練されたモデルの一般化能力の劣化を誘導することにより、不正なトレーニングに対してデータを保護することを目的とする。
しかし, 医用データに適用した場合, 医用画像のスパースな性質の欠如が主な原因であり, 有効かつ効率的ではない。
この問題に対処するために,従来の画像全体ではなく,重要なピクセル領域を選択的に摂動する新しい手法であるSALM法を提案する。
この単純で効果的なアプローチは、局所的な領域に焦点をあてることで、外乱の探索空間を著しく狭め、空間の性質を完全に活用する。
各種データセットおよびモデルアーキテクチャにわたる広範な実験により、SALMは、異なるモデルの不正なトレーニングを効果的に防止し、従来のSoTAデータ保護手法より優れていることを示す。
関連論文リスト
- FedDP: Privacy-preserving method based on federated learning for histopathology image segmentation [2.864354559973703]
本稿では,医用画像データの分散特性とプライバシ感受性について,フェデレート学習フレームワークを用いて検討する。
提案手法であるFedDPは,がん画像データのプライバシーを効果的に保護しつつ,モデルの精度に最小限の影響を与える。
論文 参考訳(メタデータ) (2024-11-07T08:02:58Z) - Improving the Classification Effect of Clinical Images of Diseases for Multi-Source Privacy Protection [0.0]
医療分野におけるプライバシーデータ保護は、データ共有に課題をもたらす。
従来の集中型トレーニング手法は、プライバシー保護原則に違反しているため、適用が難しい。
データベクトルに基づく医療プライバシデータトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:52:24Z) - SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction [15.136747790595217]
本稿では,患者の健康状態予測のためのセルフスーパービジョン・ミス・アウェア・リプレッション・ラーニング手法を提案する。
SMARTは、欠落を認識し、高次表現の学習に集中することにより、欠落データに対するより優れた一般化と堅牢性を促進する。
本研究では,6つのEHRタスクに対する広範囲な実験を通じてSMARTの有効性を検証し,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-15T02:19:34Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Privacy-Preserving Medical Image Classification through Deep Learning
and Matrix Decomposition [0.0]
近年,医学領域において深層学習(DL)ソリューションが広く研究されている。
医療関連データの利用は厳格に規制されており、病院の外部で医療記録を処理するためには、堅牢なデータ保護措置が必要である。
本稿では, 特異値分解(SVD)と主成分分析(PCA)を用いて, DL解析に使用する前に, 医用画像の難読化を行う。
保護されたデータから関連する情報を抽出するDLアルゴリズムの能力は、難読化フレームに基づく血管造影ビュー分類のタスクに基づいて評価される。
論文 参考訳(メタデータ) (2023-08-31T08:21:09Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
医療分野では、患者と臨床データの均一性を生かして、多施設共同研究がより一般化可能な発見をもたらすことがしばしばある。
最近のプライバシー規制は、データの共有を妨げ、その結果、診断と予後をサポートする機械学習ベースのソリューションを考案する。
ローカルノードの機能を統合する分散分散手法を提案し、プライバシを維持しながら複数のデータセットをまたいで一般化可能なモデルを提供する。
論文 参考訳(メタデータ) (2022-06-20T23:49:38Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。