Comprehensive Review of Reinforcement Learning for Medical Ultrasound Imaging
- URL: http://arxiv.org/abs/2503.16543v1
- Date: Wed, 19 Mar 2025 03:22:27 GMT
- Title: Comprehensive Review of Reinforcement Learning for Medical Ultrasound Imaging
- Authors: Hanae Elmekki, Saidul Islam, Ahmed Alagha, Hani Sami, Amanda Spilkin, Ehsan Zakeri, Antonela Mariel Zanuttini, Jamal Bentahar, Lyes Kadem, Wen-Fang Xie, Philippe Pibarot, Rabeb Mizouni, Hadi Otrok, Shakti Singh, Azzam Mourad,
- Abstract summary: This work aims to offer a thorough review of current research efforts, highlighting the potential of RL in building autonomous US solutions.<n>Existing surveys on advancements in the US scanning domain predominantly focus on partially autonomous solutions leveraging AI.<n>To bridge this gap, this review proposes a comprehensive taxonomy that integrates the stages of the US process with the RL development pipeline.
- Score: 15.38820664844588
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical Ultrasound (US) imaging has seen increasing demands over the past years, becoming one of the most preferred imaging modalities in clinical practice due to its affordability, portability, and real-time capabilities. However, it faces several challenges that limit its applicability, such as operator dependency, variability in interpretation, and limited resolution, which are amplified by the low availability of trained experts. This calls for the need of autonomous systems that are capable of reducing the dependency on humans for increased efficiency and throughput. Reinforcement Learning (RL) comes as a rapidly advancing field under Artificial Intelligence (AI) that allows the development of autonomous and intelligent agents that are capable of executing complex tasks through rewarded interactions with their environments. Existing surveys on advancements in the US scanning domain predominantly focus on partially autonomous solutions leveraging AI for scanning guidance, organ identification, plane recognition, and diagnosis. However, none of these surveys explore the intersection between the stages of the US process and the recent advancements in RL solutions. To bridge this gap, this review proposes a comprehensive taxonomy that integrates the stages of the US process with the RL development pipeline. This taxonomy not only highlights recent RL advancements in the US domain but also identifies unresolved challenges crucial for achieving fully autonomous US systems. This work aims to offer a thorough review of current research efforts, highlighting the potential of RL in building autonomous US solutions while identifying limitations and opportunities for further advancements in this field.
Related papers
- Can AI Agents Design and Implement Drug Discovery Pipelines? [1.5848629658789695]
Current AI agent-based systems demonstrate proficiency in solving programming challenges and conducting research.
This paper introduces DO Challenge, a benchmark designed to evaluate the decision-making abilities of AI agents.
We present the Deep Thought multi-agent system, which demonstrated strong performance on the benchmark, outperforming most human teams.
arXiv Detail & Related papers (2025-04-28T15:41:28Z) - A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma [10.226976909997711]
HCC is the third leading cause of cancer-related mortality worldwide.<n>Recent advancements in AI technology offer promising solutions to bridge this gap.<n>HSQformer is a novel hybrid architecture that synergizes CNNs' local feature extraction with Vision Transformers' global contextual awareness.
arXiv Detail & Related papers (2025-02-06T04:17:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.
Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - Development of a Large Language Model-based Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments [0.0]
This study presents an LLM-driven CDSS to assist ED physicians and nurses in patient triage, treatment planning, and overall emergency care management.
The system comprises four AI agents emulating key ED roles: Triage Nurse, Emergency Physician, Pharmacist, and ED Coordinator.
It incorporates the Korean Triage and Acuity Scale (KTAS) for triage assessment and integrates with the RxNorm API for medication management.
arXiv Detail & Related papers (2024-08-14T13:03:41Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
Large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence.<n>This paper delivers a systematic review of the field of LLM-based autonomous agents from a holistic perspective.<n>We present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering.
arXiv Detail & Related papers (2023-08-22T13:30:37Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium.
We identify barriers between AI-model development in research labs and subsequent clinical deployment.
We discuss various AI integration points in a clinical Radiology workflow.
arXiv Detail & Related papers (2022-12-29T05:17:59Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Unbox the Black-box for the Medical Explainable AI via Multi-modal and
Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond [3.4031539425106683]
Explainable Artificial Intelligence (XAI) is an emerging research topic of machine learning aimed at unboxing how AI systems' black-box choices are made.
Many of the machine learning algorithms can not manifest how and why a decision has been cast.
XAI becomes more and more crucial for deep learning powered applications, especially for medical and healthcare studies.
arXiv Detail & Related papers (2021-02-03T10:56:58Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.