Artificial intelligence techniques in inherited retinal diseases: A review
- URL: http://arxiv.org/abs/2410.09105v1
- Date: Thu, 10 Oct 2024 03:14:51 GMT
- Title: Artificial intelligence techniques in inherited retinal diseases: A review
- Authors: Han Trinh, Jordan Vice, Jason Charng, Zahra Tajbakhsh, Khyber Alam, Fred K. Chen, Ajmal Mian,
- Abstract summary: Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
- Score: 19.107474958408847
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults. The complexity and heterogeneity of IRDs pose significant challenges in diagnosis, prognosis, and management. Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges. However, the rapid development of AI techniques and their varied applications have led to fragmented knowledge in this field. This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs. It aims to structure pathways for advancing clinical applications by exploring AI techniques like machine learning and deep learning, particularly in disease detection, progression prediction, and personalized treatment planning. Special focus is placed on the effectiveness of convolutional neural networks in these areas. Additionally, the integration of explainable AI is discussed, emphasizing its importance in clinical settings to improve transparency and trust in AI-based systems. The review addresses the need to bridge existing gaps in focused studies on AI's role in IRDs, offering a structured analysis of current AI techniques and outlining future research directions. It concludes with an overview of the challenges and opportunities in deploying AI for IRDs, highlighting the need for interdisciplinary collaboration and the continuous development of robust, interpretable AI models to advance clinical applications.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends [7.893548922956548]
The emergence of artificial intelligence (AI) has marked a new era in the realm of ophthalmology.
This review explores the cutting-edge applications of deep learning (DL) across a range of ocular conditions.
arXiv Detail & Related papers (2025-01-07T18:53:14Z) - Explainable Artificial Intelligence for Medical Applications: A Review [42.33274794442013]
This article reviews recent research grounded in explainable artificial intelligence (XAI)
It focuses on medical practices within the visual, audio, and multimodal perspectives.
We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
arXiv Detail & Related papers (2024-11-15T11:31:06Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions.
These advancements also introduce substantial ethical and fairness challenges.
These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups.
arXiv Detail & Related papers (2024-07-29T02:39:17Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Current and future roles of artificial intelligence in retinopathy of
prematurity [14.333209377077058]
Retinopathy of prematurity (ROP) is a severe condition affecting premature infants.
Recent advancements in deep learning (DL), especially convolutional neural networks (CNNs) have significantly improved ROP detection and classification.
The i-ROP deep learning (i-ROP-DL) system also shows promise in detecting plus disease, offering reliable ROP diagnosis potential.
arXiv Detail & Related papers (2024-02-15T14:35:02Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Achievements and Challenges in Explaining Deep Learning based
Computer-Aided Diagnosis Systems [4.9449660544238085]
We discuss early achievements in development of explainable AI for validation of known disease criteria.
We highlight some of the remaining challenges that stand in the way of practical applications of AI as a clinical decision support tool.
arXiv Detail & Related papers (2020-11-26T08:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.